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Abstract

This paper attempts to draw a bridge between psychophys-
ics and memory research by proposing a memory-based
model of category rating. The model is based on the cogni-
tive architecture ACT-R and uses anchors stored in memory
that serve as prototypes for the stimuli classified within a
response category. The anchors are retrieved by a partial
matching mechanism and updated dynamically by an in-
cremental learning mechanism. Anchors also have base-
level activations that reflect the frequency and recency of
the responses. These mechanisms give rise to sequential
effects and nonuniform response distributions. A psycho-
logical experiment involving category rating of physical
length is reported and the predictions of the model are
compared against the empirical data. The psychophysical
implications of the model are discussed.

Introduction
Category rating is a widely used method of data collection in
experimental psychology. A category-rating situation arises
whenever the participants are asked to assign each stimulus
to one of several ordered categories such as 1, 2, …, 9  or
very dissimilar, …, very similar. Procedures of this kind are
common for many studies ranging from psychophysical
scaling to similarity judgment to personality inventories.
Therefore a detailed analysis of the cognitive mechanisms
underlying this task is potentially relevant to a diverse set of
situations.

Figure 1:  Simplified decomposition of the cate-
gory-rating process. The external stimulus S  maps
to an internal magnitude M  which in turn gives
rise to the overt response R .

A rough decomposition of the process of category rating
is presented in Figure 1. (This diagram is by no means
complete or accurate; it is provided for expository purposes
only.) The perceptual subsystem maps the external stimulus
S  onto an internal representation M  on a psychological con-
tinuum. In this paper the internal representation is called
magnitude. The magnitude M  then serves as a basis for gen-
erating an overt response R  on the category scale. The latter

transformation is the responsibility of the central (or cogni-
tive) subsystem. Both subsystems are characterized with
internal states that unfold in time and may differ from trial
to trial. Thus each box in Figure 1 has underlying dynamics
and the whole system is more complex than the open-loop
pipeline suggested by the diagram.

The present paper focuses on the central subsystem and
the computational mechanisms converting subjective magni-
tudes into external reports. While the perceptual aspects of
the process are certainly important, they are not central to
the research reported here. Therefore the research strategy has
been to try to minimize the contribution of the perceptual
subsystem so that the properties of the central one can show
through. This dictated the choice of a modality for which the
perceptual transformation is as simple as possible—physical
length.

The empirical relation between stimulus intensities S  and
averaged category ratings R  tends to follow a power func-
tion: R=k .S n (Stevens, 1957). The exponent n is character-
istic of the perceptual modality. For physical length, this
exponent is very close to 1.0 (Stevens, 1957). In other
words, the scale is linear. Thus it seems reasonable to as-
sume that the perceptual subsystem delivers veridical repre-
sentations of physical length, with little if any systematic
distortions (Krantz, 1972). Under this assumption, any pat-
terns in the category-rating data for length are largely due to
the central subsystem.

The psychophysical literature reports several phenomena
related to category rating. The most basic finding is that the
participants are able to perform this task without major dif-
ficulties and provide robust and regular data: the average rat-
ing values vary smoothly with stimulus intensity (Stevens,
1957). This is true whether or not feedback is provided (e.g.
Ward & Lockhead, 1970). The second major finding is Ste-
vens’ power law stated above. In addition to these first-order
results, there are several second-order effects as well.

The sequential effects are of special interest here because
they shed light on the dynamics of the rating process. Nu-
merous studies have indicated that the successive trials in a
rating experiment are not independent (Ward & Lockhead,
1970; Jesteadt et al., 1977; Petzold, 1981; Schifferstein &
Frijters, 1992). The responses, regarded as a time series,
show autocorrelational structure. Typically the data are ana-
lyzed using multiple regression in which the stimulus S t-1

and the response R t-1 on the preceding trial enter as predic-
tors after the contribution of the current stimulus S t has
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been partialed out. A robust finding is that current responses
tend to be contrasted (i.e. negatively correlated) with previ-
ous stimuli and assimilated (positively correlated) toward
previous responses. Moreover, there is an interaction be-
tween the two time-lagged variables S t-1 and R t-1. The as-
similation towards the previous response seems to be modu-
lated by the difference between the two consecutive stimuli
S t-1 and S t (Jesteadt et al., 1977; Petzold, 1981). The closer
the stimuli, the stronger the assimilation.

Theoretical analysis of the task also invites the hypothesis
that some form of memory is involved in the rating process.
Consider a trial in a category-rating experiment. The presen-
tation of the stimulus evokes some subjective percept in the
participant. The participant is then faced with the problem of
communicating this subjective percept using the particular
response scale chosen by the experimenter. There is no a
priori correspondence between the subjective magnitudes and
the response categories. Such correspondence must be estab-
lished at the beginning of the experiment and then applied
consistently until the end. This is a role for memory.

This hypothesis is supported by a study of Ward and
Lockhead (1970). The experiment involved 8 sessions on 8
consecutive days. Feedback was provided at the end of each
trial. Unbeknown to the participants the feedback was ma-
nipulated so that the response categories were associated
with different stimuli on different days. This caused system-
atic shifts in participants’ responses.

The thesis of the present paper is that memory plays an
important role in category rating and in particular in the
transition from internal magnitudes to overt responses.
Memory maintains the consistency of responses over periods
of hours and even days. Moreover, the hypothesis is that
failures to achieve perfect consistency—manifested as re-
sponse drifts, sequential effects, and context effects—are due
to the plasticity of the memory system and reflect the dy-
namics of its operation.

This paper reports the initial steps towards a memory-
based theory of category rating. The theory is instantiated in
a computational model called ANCHOR and the predictions of
the model are compared with empirical data.

Psychological Experiment
The ANCHOR model makes detailed predictions on a trial-by-
trial basis. To estimate the parameters of the model and
evaluate its adequacy as a psychological theory one needs
empirical data at the same level of granularity. The psycho-
physical literature cited in the introduction reports aggregate
data only and hence falls short of this standard. Therefore, a
psychological experiment was carried out. In addition to
providing the necessary data, it replicates the sequential ef-
fects from the literature and tests the assumption of linearity
of the scale of physical length.

Method

Stimulus Material.  The stimuli were pairs of white dots
presented against black background on a 17-inch Apple-
Vision monitor. The only independent variable in the ex-
periment was the distance between the two dots measured in
pixels. The distance used on each trial was drawn independ-

ently from a uniform distribution ranging from 250 pixels
(80 mm) to 700 pixels (224 mm). The viewing distance was
approximately 500 mm. The imaginary segment formed by
the dots was always horizontal and was randomized with
respect to its absolute horizontal and vertical position on the
screen. The stimulus set for each participant was generated
and randomized separately. The maximal distance repre-
sentable on the monitor was 1000 pixels (320 mm). Each
dot was roughly circular in shape with a diameter of 16 pix-
els (5 mm).

Participants: 24 students participated in the experiment to
satisfy a course requirement.

Procedure. The participants were asked to rate the “dis-
tance between the dots” on a scale ranging from 1 to 9. The
participants entered their responses on the numeric keypad of
the computer keyboard. Each trial began with a 500 ms beep
followed by 3300 ms stimulus presentation followed by 200
ms inter-trial interval. There were 17 demonstration and 450
experimental trials divided into 10 blocks with short rest
periods between the blocks. The demonstration presented
stimuli of length 275, 325, 375, …,625, 675, 625, …, 275
pixels and the participants were encouraged to practice press-
ing the keys 1, 2, …, 8, 9, 8, …, 1. No feedback was given
during the experimental trials. The whole procedure lasted
about 40 minutes.

Results and Discussion
The data are analyzed at the level of individual participants.

Linearity  of  the  Scale .  To estimate the exponent of
Stevens’ power law, a function of the form  R  =  a  +  k . S n

is fitted to the data of each individual participant. The expo-
nents n range from 1.01 to 1.12 in the sample of 24 partici-
pants, with mean 1.06. Thus the exponent is empirically
indistinguishable from unity for all participants. (The corre-
lations between the functions S 0.95, S 1.00, and S 1.10 are
greater than 0.99 in the domain [250;700].) This suggests
that the assumption of linearity of the scale is correct, at
least within the precision of measurement.

Overall Accuracy. The linearity of the scale allows the
data to be analyzed by simple linear regression of R  on S .
The squared correlation coefficient R2 is a measure of the
accuracy of the respective participant. It ranges from 0.65 to
0.91 for the 24 participants, with mean 0.80 and std.dev.
0.070. In other words, the immediate stimulus accounts for
full three quarters of the response variance, sometimes up to
90%.

Response Distributions. Even though the stimuli are
uniformly distributed, the responses are not. Figure 2 shows
the response distributions for two representative participants.
A marked feature of these distributions is the predominance
of responses in the middle of the scale at the expense of ex-
treme ones. The response standard deviation ranges from
1.20 to 2.44, with mean 1.96 and s.d. 0.28. For compari-
son, if the 450 responses were evenly distributed in 9 cate-
gories, the standard deviation would be 2.58.



Figure 2: Response distributions for two represen-
tative participants.

It seems unlikely that the perceptual subsystem maps the
uniform stimulus distribution onto a highly non-uniform
distribution of internal magnitudes. Therefore the shape of
the response distribution appears to be largely due to the
cognitive subsystem. It is possible that the participants re-
serve the extreme responses for distances that are very short
(close to zero) or very long (filling the width of the screen).
Such extreme stimuli are not presented during the experi-
ment and this may be one of the reasons for the non-
uniformity of responses. However, this explanation does not
address the peak in the middle of the scale. The memory-
based theory of category rating offers an alternative explana-
tion in terms of self-reinforcing buildup of strength for the
frequent responses and corresponding loss of strength for the
infrequent ones.

Sequential Effects.  A multiple linear regression is per-
formed with the following variables entering as predictors:
the current stimulus S t, the previous stimulus S t-1, and the
previous response R t-1. The signs of the regression coeffi-
cients of the time-lagged variables are of special interest. For
the previous stimulus S t-1, the standardized coefficient βS

ranged from –0.53 to –0.08, with mean –0.25 and s.d. 0.10.
Conversely, the standardized coefficient βR for the previous
response R t-1 ranged from +0.15 to +0.55, with mean +0.30
and s.d. 0.10. Thus all 24 participants without exception
show evidence of stimulus-driven contrast and response-
driven assimilation.

 Additional regression analyses involving interaction
terms replicate the finding of Jesteadt et al. (1977) that the
assimilation towards R t-1 is modulated by the difference be-
tween the two consecutive stimuli S t-1 and S t. These analy-
ses are not reported here because of lack of space.

Memory Based Model of Category Rating
As argued in the introduction, memory seems to play an
important role in the category-rating process. The remainder
of this paper outlines one particular proposal about the
computational mechanisms that may carry out this process.
The ANCHOR model proposed here is based on a general the-
ory of memory incorporated in the ACT-R cognitive archi-
tecture (Anderson & Lebière, 1998). The ACT-R theory is
consistent with a broad range of memory phenomena. Thus
ANCHOR draws a bridge between psychophysics and memory
research. The following two subsections describe the model
first in general terms and then with details and equations.

Main Principles of the Model
The centerpiece of the ANCHOR model is the construct of an
anchor. An anchor is an association between an internal
magnitude and a category on the response scale. There is one
anchor per category and it can be construed as an internal
representation of the prototypical member of this category.

The collection of all anchors defines a mapping from the
continuum of magnitudes to the discrete categories of the
response scale. This mapping is partly constrained and partly
arbitrary. The constraints come from the demand for homo-
morphism implied by the category-rating task. There is in-
trinsic ordering of the intensity of the physical stimuli and
hence of the magnitudes on the subjective continuum. Also,
there is ordering of the response categories. When reporting
their subjective magnitudes, the participants try to align the
ordering of the two domains.

Another constraint implied by the task is to maintain con-
sistency over time. If, for whatever reason, a stimulus is
labeled with a particular response on a given trial, there is
pressure to label this stimulus with the same response on
subsequent trials. This extends not only to the stimulus that
happened to be presented but to other stimuli that evoke
similar subjective magnitudes.

These constraints motivate the following mechanisms of
the ANCHOR model. When a stimulus is presented and en-
coded as an internal magnitude, a partial matching mecha-
nism activates an anchor whose magnitude is similar to the
magnitude of the target stimulus. In so far as anchor magni-
tudes are relatively stable, categorization of the stimuli is
consistent over time.

The partial matching is stochastic and depends on other
factors besides similarity (viz. recency and frequency, dis-
cussed below). Therefore it is not guaranteed to retrieve on
each trial the anchor that best matches the target magnitude.
In the cases when there is large discrepancy between the tar-
get magnitude evoked by the stimulus and the anchor magni-
tude retrieved from memory, a correction mechanism may
increment or decrement the response suggested by the an-
chor. The correction mechanism is stochastic and error-prone
too but it does tend to enforce homomorphism between
magnitudes and responses.

Phenomenologically, an introspective report of a category-
rating trial might run like this, “I see the dots… The dis-
tance looks like a 7… No, it’s too short for a 7. I’ll give it
a 6.”

So, the stimulus has been encoded, matched against an-
chors, and a response has been produced. Is this the end of
the trial? According to the ANCHOR model and the broader
ACT-R theory (Anderson & Lebière, 1998), the answer is
no. The cognitive system is plastic (within limits) and each
experience seems to leave a mark on it. It is impossible to
step into the same river twice. The model postulates an
obligatory learning mechanism that pulls the magnitude of
the relevant anchor in the direction of the magnitude of the
stimulus that has just been presented. Thus each trial results
in a slight change of the magnitude of one of the an-
chors—namely the one that corresponds to the response
given on that particular trial. The notion of obligatory learn-
ing is similar to the ideas of Logan (1988), although
ANCHOR learns prototypes rather than individual instances.



The implications of this incremental learning mechanism
are worth considering in detail. After a long sequence of tri-
als, each anchor magnitude ends up being a weighted average
of the magnitudes of all stimuli classified in the correspond-
ing response category. Thus the anchors are true prototypes.
However, recent stimuli weigh more heavily than earlier
ones, introducing bias. The influence of the initial instruc-
tions and demonstrations gradually wash away.

More importantly, the performance of the system on each
trial depends on the history of its performance on previous
trials. This makes it a dynamic system capable and even
forced to exhibit gradual shifts, sequential effects, and self-
reinforcing preferences. Each run of the model becomes idio-
syncratic in systematic ways apart from the random noise
even when tested on the exact same sequence of stimuli.

One final aspect of the model remains to be introduced.
There is abundant evidence that the human memory system
is sensitive to the frequency and recency of the encoded mate-
rial. These two factors enter the ACT-R theory and the
ANCHOR model through a construct called base-level activa-
tion (BLA). Each memory element, anchors included, has
some base-level activation that goes up and down with time.
The partial matching mechanism is sensitive not only to the
similarity between the target magnitude and the anchor mag-
nitudes but also to the activation levels of the anchors.
Overall, anchors with high BLA are more likely to win in
the matching process than anchors with low BLA, the target
stimulus notwithstanding.

The form of the base-level learning equation (Eq. 6 below)
entails that when a response is produced on a trial the BLA
of the corresponding anchor receives a sharp transient boost
followed by small residual increase. On the other hand, when
some response is not used for a long time the activation of
the corresponding anchor gradually decays away. In terms of
observable behavior, the rapid transient manifests itself as
sequential response assimilation and the long-term overall
strength leads to rich-gets-richer differentiation of the re-
sponse frequencies.

Details and Equations
Figure 3 shows a schematic diagram of the various quanti-
ties used in the model and the dependencies among them.

Figure 3:  Schematic diagram of the quantities used
in the model: physical intensity of the stimulus S ,
target magnitude M , anchor magnitude A , incre-
ment I , and overt response R .

The perceptual subsystem (cf. Figure 1) is modeled by a
single equation [1]. It transforms the physical intensity of
the stimulus S  into an internal magnitude M . The trans-
formation is linear, with some multiplicative noise. The
magnitudes are arbitrarily scaled between 0.25 and 0.70,
given that S  varies between 250 and 700 pixels. The random
variable ε is normally distributed with zero mean. Thus the
term (1+ε) is centered around 1.0. The standard deviation of

the noise is a free parameter of the model. In the simulation
experiments reported in the next section this parameter was
set to 0.050. The multiplicative relationship between the
scale value (i.e. the mean of the magnitude distribution in-
duced by a given stimulus S ) and the noise term implements
Ekman’s law (Ekman, 1959).

M = S . (1+ε)  /  1000                                      [1]

There are 9 anchors with magnitudes A 1…A 9 respectively.
The partial matching mechanism has to select one of them
according to their similarity to the target magnitude M  and
their base-level activations B1…B9. This process is governed
by two equations. First, a score is produced for each anchor
according to Eq. 2. Second, one anchor is chosen according
to the softmax  Equation 3.

Score i = B i –  MP. |M–A i|                              [2]

The mismatch (or dissimilarity) between two magnitudes
is simply the absolute difference between them. The mis-
match is multiplied by a mismatch penalty factor MP  and
subtracted from the base-level activation of the anchor to
produce the combined score for this anchor. MP  is a free
parameter of the model that scales the mismatches relative to
the activation values. It was set to 7.0 in the simulations.

P i = exp(Score i /  t )  /  ∑ j
 exp(Score j /  t )    [3]

Equation 3 converts scores into retrieval probabilities. P i

is the probability of retrieval of anchor i  and exp(·)  denotes
the exponentiation function. The temperature t  is a free pa-
rameter of the model controlling the degree of non-
determinism of the partial-matching process. It was set to
0.40 in the simulations.

Having retrieved an anchor, the model has to determine the
correction I to produce the final response. Under the current
settings of the model, the correction can be 0, +/–1, and
occasionally +/–2. The correction depends, stochastically, on
the discrepancy between the target magnitude M  and the
anchor magnitude A . One free parameter of the model—d
—defines a set of five discrepancy reference points {-2d , -d,
0, d, 2d}. They are compared with the algebraic difference
(M–A)  to produce correction scores:

CorrScorek =  |dk –  (M–A) |     , k = –2…+2     [4]

The correction scores are converted to choice probabilities
by an equation analogous to Eq. 3. The only differences are
that the correction scores enter with negative signs, thus
transforming the softmax rule into softmin, and that a sepa-
rate temperature parameter is used. In the simulations this
parameter was set to 0.040. The discrepancy reference pa-
rameter was d=0.090. To illustrate these settings, suppose
the anchor magnitude A  is 0.050 below the target magnitude
M , which is roughly the width of one response category.
Then there is 51% chance that the model will increment the
anchor response by +1, 39% chance to leave it unchanged,
and marginal chance to increment it by +2 or decrement it.

The final response R  is the algebraic sum of the anchor
label and the increment, clipped between 1 and 9 if needed.

At the end of the trial the learning mechanism updates the
magnitude of the anchor corresponding to the response R .
(Note that this does not necessarily coincide with the anchor
retrieved from memory.) The anchor magnitude A  is updated
according to Eq. 5, which is a form of competitive learning.
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The learning rate α weighs  the most recent trial relative to
earlier ones. The simulation experiments used α=0.50.

new_A = α.M +  (1–α) .old_A                      [5]

The base-level learning equation is somewhat less trans-
parent. The ACT-R theory postulates Equation 6a which
contains an explicit term for each instant the anchor is up-
dated (Anderson & Lebière, 1998, p.124). Suppose a particu-
lar response has been given at time lags t 1,…, t n from the
present trial. Then the base-level activation B of the corre-
sponding anchor is the logarithm of a sum of powers [6a],
where d is a decay parameter.

B = ln (∑ i
 t i

–d)                                           [6a]

Because Equation 6a is computationally expensive, the
model uses Eq. 6b which closely approximates the theoreti-
cal formula. The approximation disregards the detailed update
history and retains only the time lag since the last usage t ,
the lag T  since the beginning of the experiment, and the
total number of  times the corresponding response has been
given up to the current trial. In the simulation experiments
the decay parameter was set to d=0.5, which is a default
value used in many ACT-R models. The duration of each
trial was 4 sec, as in the psychological experiment.

B = ln [t –d +  n . (T 1–d–t 1–d)  /  [(1–d)(T-t)]]   [6b]

Equations 2, 3, 4, and 6a are taken verbatim from the
ACT-R architecture (Anderson & Lebière, 1998) and thus
establish continuity between the ANCHOR model and a broad
spectrum of memory-related models. Equation1 is ANCHOR’s
connection to Stevens’ and Ekman’s psychophysical laws.

Evaluation of the Model

Simulation Experiment
In order to test the model, its computer implementation was
run on the 24 random sequences of stimuli used in the psy-
chological experiment. To mimic the effect of the introduc-
tory demonstration, the magnitudes of the anchors were ini-
tialized as follows. Anchor 9 was set to 0.800—a compro-
mise value between the longest stimulus presented on the
demonstration (675 pixels) and the total width of the screen
(1000 pixels). Anchor 1 was initialized to 0.150 and the
remaining anchors were evenly spaced in between. The other
parameters were set as reported in the previous section. The
model generated 24 sequences of responses which were then
analyzed in the same way as the psychological data.

Table 1:  Comparison of the performance of the model
and the psychological data. See text for details.

Human data Model
Statistic min mean max  s.d. min mean max  s.d.
Accuracy (R2)   .65  . 80    .91  .07   .65  . 76    .84  .05
Resp. std.dev. 1.20 1.96  2.44  .28 1.58 1.81  2.57  .21
Multiple R2   .67  . 83    .93  .07   .73  . 78    .84  .03
Increase in R2   .00  . 02    .06  .01   .00  . 02    .10  .02
β for S t   .80  . 90    .93  .04   .80  . 87    .92  .03
β for S t-1 –.53 –.25  –.08  .10 –.47 –.23  –.10  .09
β for R t-1 +.15 +.30  +.55 .10 +.13 +.25  +.53 .10

Table 1 summarizes the outcome of these various analyses
and compares the performance of the model with the human
data. The overall accuracy of the model, operationalized as
the squared correlation between stimuli and responses, ranges
from 0.65 to 0.84 in the sample of 24 runs, with mean 0.76
and standard deviation 0.046. The mean R2 for the psycho-
logical data is 0.80. The degree of non-uniformity of the
response distribution is reflected in the standard deviations
reported in the second row of Table 1.

The remainder of Table 1 summarizes the multiple regres-
sion analysis of the response R t on the current stimulus S t,
previous stimulus S t-1, and previous response R t-1. The
model shows the same pattern of sequential effects as the
psychological data.

Overall, the results of the simulation experiment suggest
that the ANCHOR model closely matches human category-
rating behavior. The biggest discrepancy between the two
data sets is that the model responses are less variable. The
human data, however, includes both within-subject and be-
tween-subject variability whereas the parameter settings of
the model were fixed for all 24 runs. Individual differences
can be modeled by using different parameter settings for the
different runs.

Explanation of the Empirical Phenomena
The fact that a model fits the data indicates that its computa-
tional mechanisms hang together and can be brought in line
with the empirical observations. A much more acid test for
the utility of the model, however, is the degree to which it
contributes to the theoretical understanding of the psycho-
logical phenomena. This closing section discusses the em-
pirical effects in light of the ANCHOR model.

Nonuniformity of the Response Distribution.  The
model shifts the level of theorizing from aggregate scale
values to individual responses. At that level of granularity
the entire response distribution becomes important. Two
salient features of this distribution appear to be the predomi-
nance of responses in the middle of the scale and the relative
infrequency of extreme responses (Figure 2). Several factors
conspire to produce such distributions in the model. The
base-level learning mechanism (Eq. 6a/b) tends to differenti-
ate the response frequencies—more frequent anchors build up
strength which in turn makes them more likely to be re-
trieved in the future. This makes flat distributions unsta-
ble—small differences tend to grow. This self-reinforcing
dynamics cannot go out of hand, however, because of three
stabilizing factors. First and foremost, the immediate stimu-
lus controls about 75% of the response variance and hence
the responses cannot stray too much from the stimuli. Sec-
ond, the correction mechanism redistributes the strength
among neighboring anchors. This inhibits the formation of
isolated spikes or gaps in the distribution, making the
smooth unimodal shape the most stable configuration. . The
third stabilizing factor is related to the context effects dis-
cussed below.

Context Effect.  If the stimuli control 75% of the re-
sponse variance and the base-level learning tends to amplify
inequalities, what happens when the stimuli are unevenly



distributed themselves? It may appear that the model would
produce responses that are even more skewed. This would
directly contradict the finding of several studies (Parducci,
1965; Parducci & Wedell, 1986; Schifferstein & Frijters,
1992). Empirically, the responses tend to be less skewed
than the stimuli, not more so. However, simulation experi-
ments with the ANCHOR model that are too long to be de-
tailed here indicate that it produces context effects consistent
with the empirical data. In a nutshell, this is due to the an-
chor adjustment Equation 5. Because the anchors are proto-
types, they tend to cluster in those regions of the magnitude
continuum that are densely populated with stimuli. In turn,
this reduces the skewness of the response distribution.

Sequential Effects. The positive autocorrelation between
responses on successive trials is a direct consequence of the
recency component of base-level activations (Eq. 6a/b).
When a particular response is given, the BLA of its corre-
sponding anchor goes up, which in turn improves the prob-
ability of retrieving the same anchor on the next trial. This
produces assimilation towards the previous response. How-
ever, the increase of the activation level matters only when
the two successive stimuli are similar enough (cf. Eq. 2). If
they are too far apart, the response on the first trial primes
an anchor that is too remote from the target on the second
trial to have any influence on the final outcome. The closer
the two consecutive stimuli, the stronger the assimilation.

Another sequential effect is the negative correlation be-
tween the response R t on a given trial and the stimulus S t-1

on the previous trial. Part of this effect is probably due to
the perceptual subsystem and its tendency to enhance con-
trasts. The ANCHOR model, however, has a deliberately sim-
plified front end that precludes any interaction between the
stimuli at the perceptual level. Still, the model exhibits
contrast effects due to the plasticity of anchor magnitudes
(Eq. 5) and the discrepancy penalizing aspect of the partial
matching mechanism (Eq. 2). The magnitude of the past
stimulus S t-1 is averaged into the magnitude of one of the
anchors, which then serves as a proxy of that stimulus on
subsequent trials. The anchor magnitudes A i are subtracted
from the new target magnitude M  during the partial match-
ing process. In other words, one of the A i terms in Eq. 2 is
positively correlated with S t-1, M  is positively correlated
with R t,, and A i and M  are subtracted from each other. This
creates negative relationship between the response R t and the
previous stimulus S t-1.

Memory-Related Effects.  The anchors are stored in
memory and decay only slowly with time. Therefore, the
mapping from stimuli to responses implicit in these anchors
can influence the performance hours and even days later.

This paper argues in favor of the hypothesis that category
ratings are produced in a memory-based manner. A range of
category-rating phenomena seem to arise naturally from a set
of principles that are also consistent with a large body of
memory research. In so far as the ANCHOR model is suc-
cessfull, it illustrates the advantages of its integrative meth-
odology and the utility of general architectures for cognitive
modeling.
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