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Category Rating Is Based on Prototypes and Not Instances:
Evidence from Feedback-Dependent Context Effects

Alexander A. Petrov
Ohio State University

Context effects in category rating on a 7-point scale are shown to reverse direction depending on
feedback. Context (skewed stimulus frequencies) was manipulated between and feedback within subjects
in two experiments. The diverging predictions of prototype- and exemplar-based scaling theories were
tested using two representative models: ANCHOR and INST. To gain coverage on one side of the
continuum, a prototype-based category must lose on the opposite side. ANCHOR can exhibit both
assimilative and compensatory context effects depending on feedback. INST always exhibits assimilative
effects. The human data show a significant context-by-feedback interaction. The main context effect is
assimilative in one data set and compensatory in the other. This pattern is consistent with ANCHOR but
rules out INST, which fails to account for the compensatory effect and the interaction. This suggests that
human category rating is based on unitary representations.
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Category rating is a widely used method of data collection in
experimental psychology. Psychophysical scales (e.g., Stevens,
1957), similarity judgments, typicality judgments, attitude ques-
tionnaires, and health self-reports—all these tasks involve classi-
fying stimuli using an ordered set of relatively few categories such
as 1 ... 7 or very dissimilar ... very similar. Such ratings are
among our primary dependent measures. It is important to formu-
late a detailed, quantitative theory of how people produce these
ratings (Petrov & Anderson, 2005). Moreover, the category rating
task constrains theories of perception, categorization, and memory.
As such, it is a fertile field for theoretical integration. The present
study uses a psychophysical paradigm to differentiate between two
prominent theories of categorization. It also makes a contribution
to the psychophysical literature by demonstrating that external
feedback can reverse the direction of context effects in category
rating.

A classic controversy in the categorization literature (see, e.g.,
Ashby, 1992, for review) contrasts prototype and exemplar-based
representations of categories. According to the prototype view
(e.g., Posner & Keele, 1968; Smith & Minda 1998; Rosch, 1975),
each category is represented by a unitary description of the central
tendency of its members. Novel instances are classified on the
basis of their similarity to the prototypes of various categories.
Alternatively, categories can be represented by storing the indi-
vidual instances themselves (Kruschke, 1992; Medin & Shaffer,
1978; Nosofsky, 1986, 1992; Nosofsky & Zaki, 2002). According
to this exemplar-based view, novel instances are classified on the
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basis of the weighted aggregate similarity to the known instances
of various categories. Thus, prototype systems aggregate the in-
formation about known category members as they are stored in
memory, whereas instance-based systems delay the aggregation
until retrieval time. It has proven surprisingly difficult to discrim-
inate between these competing views and a lively debate continues
to this day (e.g., Busemeyer, Dewey, & Medin, 1984; Minda &
Smith, 2001, 2002; Nosofsky, 2000; Nosofsky & Stanton, 2005;
Olsson, Wennerholm, & Lyxzen, 2004; Smith & Minda, 2000,
2002; Stanton, Nosofsky, & Zaki, 2002; Zaki, Nosofsky, Stanton,
& Cohen, 2003). The difficulty stems in part from the great
flexibility of instance-based models, which can mimic prototype
models in certain parameter regimes (Nosofsky & Johansen, 2000;
Nosofsky & Zaki, 2002; but see Myung, Pitt, & Navarro, 2007).
Various hybrid schemes have also been proposed (e.g., Ashby,
Alfonso-Reese, Turken, & Waldron, 1998; Erickson & Kruschke,
1998; Huttenlocher, Hedges, & Vevea, 2000; Love, Medin, &
Gureckis, 2004; Nosofsky, Palmeri, & McKinley, 1994).

A physical analogy clarifies the differences between the two
classes of models. It is as if each category representation generates
a gravitational field' across the stimulus space. When a new
stimulus appears somewhere in this space, the categories compete
to incorporate the new unit mass into their representation. By
definition, all the mass of a prototype-based category is concen-
trated in a single point: the prototype. In this article, this will be
referred to as the unitary constraint on category representation.
The resulting gravitational field is radially symmetric and centered
on that point. By contrast, instance-based representations are not
subject to the unitary constraint. The mass of an instance-based

! Technically, this field is proportional to the product of the (estimated)
base rate and the (estimated) probability density function of the category
(cf. Ashby & Alfonso-Reese, 1995).
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category is dispersed across multiple points of unit mass each. The
resulting gravitational field can have very irregular topography.

Prototype-based models have well-known limits of applicability
(e.g., Ashby & Gott, 1988; Ashby & Maddox, 1992, 1993; Medin
& Shaffer, 1978; Nosofsky, 1992; Nosofsky et al., 1994; Nosofsky
& Zaki, 2002). There are categories that instance-based models
(and humans) can learn but prototype-based ones cannot. The
complement is not true. Instance-based models can learn any
stationary categorization task with enough practice with feedback
(Ashby & Alfonso-Reese, 1995). Thus, they have great represen-
tational flexibility. It has been argued on the basis of this flexibility
that instance-based accounts offer a general, all-encompassing
model of human categorization (e.g., Nosofsky & Johansen, 2000;
Nosofsky & Zaki, 2002). Even in domains in which prototype-
based theories can account for the data, the argument goes,
instance-based theories should still be preferred on grounds of
parsimony unless there is “clear and definitive evidence for the
operation of prototype abstraction in people’s category represen-
tations” (Nosofsky & Zaki, 2002, p. 939).

The present experiment provides one piece of such evidence.
Our results establish a limit for the applicability of instance-based
theories of categorization. Despite their spectacular success in
other tasks, it appears that instance-based theories cannot provide
an empirically adequate account of category rating without feed-
back.

The unitary constraint plays a key role in our argument. The two
types of representations can be differentiated on the basis of one of
its side effects. When a unitary category acquires a new member,
the prototype moves toward the corresponding point in stimulus
space. But this also moves it away from the opposite region of the
space. Thus, there are locations where the gravitational field of the
category weakens after the incorporation of a new member.
Instance-based categories, on the other hand, can expand with
impunity because they are free from the unitary constraint. Each
new acquisition makes a positive contribution to the gravitational
field across the entire stimulus space. It cannot happen that the
field weakens anywhere after the incorporation of a new member.

Categorization models are often tested in binary classification
tasks with multidimensional stimuli (e.g., Medin & Shaffer, 1978).
Our task, by contrast, has seven response categories and unidi-
mensional stimuli (distances between pairs of dots). If the
instance-based theory is a truly universal account of categoriza-
tion, it should apply to this task, too. One advantage of our task is
that it makes it easy to detect whether a category “loses ground” on
one side when it “gains ground” on the opposite side. This is
because the stimuli are linearly ordered and because most catego-
ries are flanked by other categories. Category rating also intro-
duces the notion of systematic alignment—homomorphism—
between stimuli and responses (Stevens, 1957). This
homomorphism supports the formation of categories without any
external feedback (Petrov & Anderson, 2005). This in turn allows
for powerful experimental manipulations that are not possible in a
two-choice categorization paradigm. The present experiments use
such feedback manipulation.

Human categorization is sensitive to the frequencies of occur-
rence of various stimuli in the environment. This sensitivity gives
rise to phenomena known as context effects in the psychophysical
literature. The classification of a given stimulus depends not only
on the stimulus itself but also on the distribution of other stimuli in

a block of trials (e.g., Chase, Bugnacki, Braida, & Durlach 1983;
Marks, 1993; Parducci, 1974). One convenient way to manipulate
the location of a category prototype is to increase the presentation
frequency of stimuli near one end of the continuum or the other.
The simplest experimental design is to compare the performance
under a skewed stimulus distribution with the baseline perfor-
mance under a uniform distribution. Two kinds of context effects
are possible: assimilative and compensatory. For concreteness,
suppose a group of observers is presented with predominantly long
stimuli. By definition, if the stimuli tend to be systematically
overestimated relative to baseline, there is assimilation—the re-
sponses are attracted toward the densely populated end of the
scale. The rich get even richer. If the stimuli tend to be systemat-
ically underestimated instead, there is compensation. The response
distribution is less skewed than the stimulus distribution.

Instance-based models predict assimilative context effects. Be-
cause all instances are stored separately and similarities always
add, densely populated regions must have an attractive effect on
any new instance. The predictions of prototype-based models are
more complex because of the presence of two opposing mecha-
nisms. One mechanism is assimilative—f{requently used proto-
types become more active, which gives them an advantage in the
competition for new members. However, there is also a compen-
satory mechanism—when a prototype moves towards the densely
populated region of the space, it “abandons” the less dense regions
to competing prototypes. The overall context effect depends on the
relative strengths of these opposing forces. Both assimilative and
compensatory context effects are possible. A quantitative model is
needed to weigh the relative strengths of the various factors.

In this article, we explore the qualitative patterns of behavior
predicted by a representative example of each model class. The
class of prototype-based models is represented by ANCHOR
(Petrov & Anderson, 2000, 2005). It is a memory-based scaling
model that stores a single anchor per category. Each anchor is a
weighted average of all stimuli labeled with the corresponding
response. The class of instance-based models is represented by a
variant of ANCHOR that stores a new exemplar on every trial. It
is referred to as INST here and can be regarded as a modification
of the well-known Generalized Context Model (GCM) (Medin &
Shafer, 1978; Nosofsky, 1986, 1988). ANCHOR and INST are
identical in all respects except their category representations. Thus,
any differences in their observable behavior must follow from this
representational difference.

Human categorization is a dynamic process that gives rise to
sequential, practice, and other dynamic effects. ANCHOR has two
incremental learning mechanisms that account for a comprehen-
sive list of these effects in category rating and absolute identifi-
cation (Petrov & Anderson, 2005). A competitive learning mech-
anism adjusts the location of each anchor along the magnitude
continuum. A base-level learning mechanism updates the avail-
ability of the anchors. Under skewed stimulus distributions, these
two mechanisms tend to push the average response level in oppo-
site directions. Base-level learning is assimilative whereas com-
petitive learning is compensatory.

The compensatory tendency is a direct consequence of the
unitary constraint on ANCHOR representations, as detailed in the
next section. Moreover, this compensatory tendency disappears in
the presence of external feedback. Thus, ANCHOR predicts that
the context effects can have opposite directions with and without
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feedback. This prediction was confirmed in two experiments that
manipulated the stimulus frequencies within subjects and feedback
between subjects (Petrov & Anderson, 2005). The experiments
reported here have a complementary design: The frequencies are
manipulated between and feedback within subjects, in order to
trace the feedback-induced dynamics of the context effects.

INST also has two incremental learning mechanisms. Its base-
level learning is a special case of that in ANCHOR—instances
decay with time. The dynamic adjustment of anchor locations,
however, is replaced in INST by the memorization of separate
exemplars. Once committed to memory, the locations of these
exemplars never change. Conceptual analysis and computer sim-
ulations demonstrate that this mechanism produces assimilative
context effects. Thus, INST has no mechanism that can counter-
balance the assimilative influence of frequent stimuli. INST can
never produce compensatory context effects. It can only assimi-
late, and this assimilation is exacerbated in the absence of feed-
back.

The next section presents the ANCHOR theoretical framework
and explains the key predictions in qualitative terms. ANCHOR
can produce some behavioral patterns that INST cannot, even
though the representational scheme of ANCHOR is more con-
strained than that of INST.? The results of Experiment 1 are
compatible with ANCHOR but not INST. Although context effects
are assimilative overall, there is a significant interaction with
feedback. Lack of feedback makes the context effects less assim-
ilative and can even reverse their direction under certain condi-
tions. A second experiment replicates this context-by-feedback
interaction with different stimuli and under tighter controls. The
main effect of context is compensatory in the second data set,
which is even more problematic for INST. On the basis of these
empirical findings and a theoretical analysis of the task demands,
we conclude that category rating is based on prototypes and not
instances. Finally, the broader implications are discussed and the
models are compared to other influential models from the litera-
ture.

Theoretical Framework

The two models presented in this article are based on the
ANCHOR theoretical framework (Petrov & Anderson, 2000,
2005). It integrates three broad theories: memory-based categori-
zation (e.g., Nosofsky, 1986; Rosch, 1975), Thurstonian psycho-
physics (Thurstone, 1927; Torgerson, 1958), and the theory of
memory incorporated in the ACT-R architecture (Anderson &
Lebiere, 1998; Anderson & Milson, 1989). The ANCHOR theory
is described in detail elsewhere (Petrov & Anderson, 2005). The
present analysis is predicated on the four principles summarized
below.

Main Principles

Internal magnitude continuum. It is assumed that some
sensory process maps the intensity of the physical stimulus onto an
internal magnitude. It is this internalized quantity that can be
committed to memory and compared against other magnitudes.

Content-addressable memory. It is possible to establish
associations between a magnitude and the label of a response
category. The anchors in ANCHOR and the instances in INST are

such associations. They substantiate the mapping between magni-
tudes (and hence the stimuli represented by them) and responses.
Given a new target magnitude for classification, the memory fills
in the corresponding response label. This completion process is
stochastic and depends on two factors: (a) the similarity of each
memory element to the target and (b) the base-level activation of
each memory element.

Explicit correction strategies. People are aware that their
“first guess” is not always reliable and adopt explicit correction
strategies. The product of memory retrieval is not always reliable
because the memory system is noisy and biased in favor of
frequent and/or recent items. The role of memory is to provide a
reference point in the vicinity of the target, thereby converting the
global scaling problem into a local comparison problem. The final
response can increment or decrement the retrieved category label.
An introspective report of a trial might go like this: “This looks
like a 5. No, it’s too short for a 5; I'll give it a 4.” It is well known
that people rely on such anchor-plus-adjustment heuristics in un-
certain situations (Tversky & Kahneman, 1974). However, the
profound impact that even occasional corrections can have on the
dynamical stability of a memory-based system has only recently
been appreciated (Petrov & Anderson, 2005). The correction
mechanism is the major ANCHOR innovation relative to standard
memory-based theories. It is what allows ANCHOR to unfold a
rating scale without any external feedback. The correction strategy
is not elaborated here because it does not inform our present focus
on prototypes versus instances. We should keep in mind, however,
that without corrections both models fall prey to runaway winner-
takes-all dynamics in the absence of feedback.

Obligatory learning. The state of the system is incrementally
updated at the end of each trial. One learning mechanism updates
the base-level activations of the memory elements and thus indi-
rectly tracks the base rates of the corresponding responses. A
second learning mechanism tracks the probability density of each
category across the magnitude continuum. The latter mechanism is
sensitive to the unitary constraint on category representation. The
two models presented below differ mainly in the way they learn
the probability densities of categories.

Two Models: ANCHOR and INST

The ANCHOR model instantiates these theoretical principles in
a concrete, implemented system.® See Appendix A for a list of
equations and Petrov & Anderson (2005) for a comprehensive
treatment.

Briefly, ANCHOR uses prototype representations: There is one
anchor per response category. The instructions in our experiments
call for a seven-point response scale. Thus, under the unitary
constraint, there are seven anchors in the model. When a new
stimulus is presented, its magnitude serves as a memory cue and
the anchors compete to match it. The winning anchor represents
ANCHOR’s “first guess” and provides a reference point for the

2 This illustrates that representational flexibility does not necessarily
entail behavioral flexibility (R. Nosofsky, personal communication, April
28, 2010).

3 Open-source Matlab implementation of both ANCHOR and INST is
available at http://alexpetrov.com/proj/anchor/
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correction mechanism. The latter may increment or decrement the
anchor response depending on the discrepancy between the target
and anchor magnitudes. This introduces a relative-judgment com-
ponent to ANCHOR (cf. Stewart, Brown, & Chater, 2005) and
accounts for the growing evidence of negative generalization be-
tween highly dissimilar stimuli (Stewart, Brown, & Chater, 2002;
Jones, Love, & Maddox, 2006).

The adjustments are systematic but conservative. Their system-
aticity promotes the homomorphism between stimuli and re-
sponses even without feedback. Because positive discrepancies
trigger positive corrections, large stimuli tend to map to high
responses in the long run. Because correction thresholds are con-
servatively high, it matters which anchor is used as reference—the
response is often assimilated toward it. This is how factors such as
frequency and recency exert their influence—anchor selection is
sensitive to them and subsequent correction does not compensate
for them fully. This insufficiency of adjustment is a common
theme in the diverse literature on anchoring effects (e.g., Hastie &
Dawes, 2001; Wilson, Houston, Etling, & Brekke, 1996).

After committing to a response, ANCHOR updates the corre-
sponding anchor to reflect the incorporation of a new stimulus into
this category. If there is feedback, this is it; otherwise the system’s
own response designates the anchor for update. The base-level
activation of this anchor increases, whereas the activations of all
other anchors decay. A separate learning rule adjusts the location
of the anchor on the magnitude continuum. The basic idea is very
simple—the anchor moves a little towards the new exemplar being
incorporated into the category. Only the anchor for the current
response is updated; all other anchors stay put. This competitive
learning rule sets the location of each anchor to the (exponentially
weighted) running average of the magnitudes of all stimuli clas-
sified under the associated response category.

INST is our representative member of the class of instance-
based models. It is identical with ANCHOR in all respects except
that it does not obey the unitary constraint on category represen-
tations. It stores a separate exemplar on each trial. Consequently,
there is no need for competitive learning. It is replaced by simple
memorization of individual exemplars. Each exemplar has a base-
level activation that decays with time. The exemplars compete to
match the target on each trial. This competition is governed by the
same equations as in ANCHOR and is mathematically equivalent
to that in the GCM (Nosofsky, 1986, see Appendix A). The
competition involves hundreds of memory elements in INST as
opposed to seven elements in ANCHOR.

Once an instance is retrieved from memory, it is subject to the
same correction strategy as in ANCHOR. This is a major differ-
ence from GCM. It is what allows INST to perform not only
absolute identification with feedback (Nosofsky, 1997) but also
category rating without feedback (Petrov & Anderson, 2005). The
decaying activation of INST’s exemplars is a second difference,
although there are GCM variants that involve exemplar strengths
and response biases (Nosofsky, 1988, Nosofsky & Palmeri, 1997).

Context Effects: Push and Pull

Both ANCHOR and INST are adaptive dynamic systems. Oblig-
atory learning is one of their foundational principles. As new
stimuli are presented and classified under various response cate-
gories, the internal representations of these categories change in

systematic ways. This in turn affects the classification of future
stimuli. Because stimulus frequency is a potent determinant of this
dynamics, both models predict context effects on a principled
basis.

INST always predicts assimilative context effects under skewed
stimulus distributions. To illustrate, suppose long stimuli are more
frequent than short ones. As each exemplar is stored individually,
the memory pool contains many instances labeled 5, 6, or 7 and
few instances labeled 1, 2, or 3. Now, suppose a target in the
middle of the range is presented. Its correct classification is 4, but
it is also quite similar to instances labeled 3 and 5. By sheer force
of numbers as all instances compete to match the new target,
the probability to retrieve an instance labeled 5 is greater than the
probability to retrieve an instance labeled 3. Consequently, the
new stimulus is misclassified as 5 more often than it is misclassi-
fied as 3. The responses tend to shift toward the densely populated
regions on the scale—an assimilative context effect. None of the
other INST mechanisms can reverse the direction of this effect.
The activations of all old instances decay at the same rate. The
correction mechanism operates on the single instance retrieved
from memory on a given trial. Although some retrieval mis-
matches are corrected, many go undetected. Thus, the assimilative
tendency induced by the uneven gravitational fields persists,
though attenuated. The important contribution of the correction
mechanism is to prevent this tendency from running out of control
in the absence of feedback (Petrov & Anderson, 2005).

ANCHOR, on the other hand, is consistent with both assimila-
tive and compensatory context effects. This is because the two
learning mechanisms in ANCHOR push in opposite directions.
The overall context effect depends on the parameter-dependent
relative strengths and interactions of these opposing forces.

The base-level learning mechanism in ANCHOR has an assim-
ilative influence. To continue the above example, if more stimuli
have been labeled 5 than 3, the activation of anchor 5 will be
stronger than that of anchor 3. This is how the base rates of the
categories are represented in ANCHOR (and ACT-R more gen-
erally). Active anchors are more likely to be retrieved from mem-
ory. Categories with many members thus exert stronger gravita-
tional fields than categories with few members, everything else
being equal.

But not everything else is equal in ANCHOR because of the
compensatory influence of the competitive learning mechanism.
Figure 1 illustrates the qualitative situation. A configuration with
uniformly located, equally active anchors serves as baseline (top).
The cone around each anchor depicts its gravitational field. The
rectangular areas delineate the resulting partitions of the magni-
tude continuum. (The stochasticity of the anchor selection mech-
anism is ignored for simplicity. See Appendix A for details.) Now,
suppose a long stimulus is classified under the category repre-
sented by the middle anchor in Figure 1. After this stimulus is
averaged in, the anchor location shifts to the right. The gravita-
tional field of this anchor also shifts without growing in size. As a
result, a region formerly labeled 2 is now labeled 1, and a region
formerly labeled 3 is now labeled 2. The net result is a systematic
decrement of the overt responses.

It is convenient to formulate a descriptive rule of thumb to refer
to this effect. According to this inversion rule, whenever the
location of any anchor increases, responses decrease on average,
and vice versa. The fundamental reason for this inversion is the
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Figure 1. Tllustration of the compensatory influence of the competitive
learning mechanism in the ANCHOR model. The cone around each anchor
(circle) depicts its “gravitational field” on the target magnitude continuum
(horizontal axis). Assume the anchors are labeled 1, 2, 3 from left to right.
Top: Baseline configuration with three equally spaced anchors. Bottom:
Anchor 2 has shifted to the right after averaging in a long stimulus. As a
result, a (grey) region formerly labeled 2 is now labeled 1, and a region
formerly labeled 3 is now labeled 2. Thus, whenever an anchor shifts to the
right, the responses shift to the left and vice versa.

unitary constraint on category representations. Because there is
only one anchor per category, when it moves towards some region
of the stimulus space, it is forced to leave the opposite region
behind. In the latter region (e.g., to the left of the black anchor
in Figure 1b), the gravitational field weakens after the incorpora-
tion of a new member.

The competitive learning tracks the probability density of the
magnitude distribution. In skewed stimulus contexts, all anchor
locations shift toward the densely populated end of the continuum.
For example, suppose there is a preponderance of long stimuli. As
they are being averaged in, the anchor locations shift toward longer
values. By the inversion rule, the overt responses tend to shift in
the opposite direction—a compensatory context effect.

This compensation counteracts the assimilatory tendency of the
base-level learning. The opposition between the two learning
mechanisms dampens any big fluctuations in either direction and
aids the correction mechanism in preserving the stability of the
system.

The Role of Feedback

ANCHOR is consistent with compensatory context effects
where as INST is not. This difference can be used to dissociate the
two models empirically. However, both models are consistent with
assimilative context effects. Assimilative patterns are therefore
ambiguous and must be dissociated on the basis of some other
variable. The presence or absence of feedback is one such variable.

INST is relatively insensitive to feedback. None of its mechanisms
is changed by feedback in any fundamental way.* ANCHOR, on the
other hand, is affected by feedback. The differential predictions of the
two models hinge again on the competitive learning mechanism (and
hence on the unitary constraint enforced by it).

External feedback effectively switches competitive learning off.
This is because when veridical feedback is available, the model
always updates the anchor representing the correct classification of
the stimulus. This fixes the anchor locations to the internal images
of the corresponding stimuli regardless of their presentation fre-
quencies. The only remaining variability comes from perceptual
fluctuations, which have no systematic effect on the overt re-
sponses.

ANCHOR’s activation learning, on the other hand, exerts its
assimilative tendency regardless of feedback. Skewed stimulus
distributions always lead to skewed activation profiles, which in
turn affect the retrieval probabilities and hence the responses. The
assimilative tendency in INST persists regardless of feedback for
similar reasons.

In summary, ANCHOR makes the following predictions. With
feedback, context effects must be assimilative because the com-
pensatory tendency of the competitive learning mechanism is
switched off and all that remains is the assimilative tendency of the
activation learning mechanism. Without feedback, the direction of
the context effects is parameter-dependent. When feedback alter-
nates across blocks, it interacts with context so that the context
effect must be less assimilative with feedback than without.

Experiment 1

The present experiment is designed to differentiate the two
classes of categorization models on the basis of these diverging
predictions. A set of seven line lengths is used throughout. Three
contexts—uniform, low, and high—are defined by different fre-
quency distributions. Context is manipulated between subjects and
feedback within subjects.

Method

Stimuli and apparatus. The stimuli were pairs of white dots
presented against a uniformly black background on a 17-inch
AppleVision monitor. The viewing distance was approximately
600 mm. The independent variable was the distance between the
centers of the two dots. The stimulus set consisted of seven dot
pairs with the following distances: 420, 460, 500, . . ., 660 pixels
(420 pixels = 134 mm =~ 13 degrees of visual angle [dva]; 660
pixels =~ 221 mm ~ 20 dva). The full width of the monitor was
1000 pixels (320 mm, 32 dva). The imaginary segment formed by
the dots was always horizontal and was randomized with respect to
its absolute horizontal and vertical position on the screen. The
stimulus set for each participant was generated and randomized
separately. Each dot was roughly circular in shape with a diameter
of 16 pixels (5 mm, 0.5 dva).

Observers.  Fifty-five undergraduate students at Carnegie
Mellon University participated in the experiment to satisfy a
course requirement.

Design.  Each stimulus sequence consisted of 17 blocks of 28
trials each. The presentation frequencies in each block varied
depending on context as follows: Uniform (U) blocks contained
four presentations of each stimulus. Low (L, positively skewed)

4 This insensitivity depends on the correction mechanism. Instance-
based models without corrections are generally extremely sensitive to
feedback.
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blocks contained 7, 6, 5, ..., 1 presentations of Stimuli 1, 2, 3,
..., 1, respectively. High (H) blocks were skewed in the opposite
(negative) direction. The order of presentation was randomized
within each block.

There were five experimental groups: group Ul presented 17
uniform blocks. Groups L1 and L2 presented 1 uniform block
followed by 16 low blocks. Groups H1 and H2 presented 1
uniform block followed by 16 high blocks. The first block was
always uniform and always with feedback. The feedback-first
groups Ul, L1, and H1 gave veridical feedback on blocks 2—5 and
10-13 and no feedback on blocks 6-9 and 14-17. The no-
feedback-first groups L2 and H2 gave no feedback on blocks 2—-5
and 10-13 and veridical feedback on blocks 6-9 and 14-17.

Procedure. The participants were instructed that there were
seven stimuli and seven responses and that their task was to
identify each stimulus with a number from 1 to 7. The instructions
stated that the seven stimuli would be shown “multiple times in
random order.” Nothing was mentioned about presentation fre-
quencies.

Each trial began with a 500-ms alert sound followed by the
presentation of a dot pair on the monitor. The dots remained visible
until the participant entered their response on the keyboard. Then
the dots were replaced by a big white digit indicating the correct
identification in feedback blocks or by an uninformative “X” in
no-feedback blocks. The character stayed for 1100 ms. Then the
screen was cleared and the next trial began. Its 500-ms alert sound
served as the inter-trial interval. Each session lasted about 40
minutes and consisted of 476 trials divided into 8 periods with
short breaks after trials 70, 140, 196, 252, 308, 364, and 420.

Dependent variable. Petrov and Anderson (2005) introduced
a general method for tracking the average response levels (ARLs).
Context effects manifest themselves as ARL deflections under
different conditions. ARL is our primary dependent variable
throughout this article. It is defined as the area under the Stevens
function divided by the stimulus range (Petrov & Anderson, 2005).
The Stevens function R = F(S) gives the expected category rating
of each stimulus (Stevens, 1957). It is a good summary of the
response policy across the stimulus range. The ARL is designed to
condense this summary to a single number that can be estimated
from behavioral data collected with arbitrary presentation frequen-
cies. ARL is calculated in two steps. First, the coefficients of the
Stevens power function R = R, + aS" are estimated from the
stimulus-response pairs. As the exponent n for physical length is
virtually 1.0 (Stevens & Galanter, 1957; Petrov & Anderson,
2005), simple linear regression suffices for the present analyses.
The second step of the ARL calculation is also very simple for
linear functions. The ARL equals the predicted response to the
stimulus in the middle of the range:

ARL = RO + a(Smin + Smax)/z (1)

Our middle stimulus is 540 pixels long. Thus, ARL = R, +
540a. The coefficients R, and a are estimated by linear regression.
The stimulus-response sequence is segmented into nine non-
overlapping periods of 56 trials each.® A separate regression line is
fitted and ARL calculated for each period. This converts the raw
data to a profile of nine average response levels per participant.

Results and Discussion

Figure 2 plots the mean ARL profiles for the five experimental
groups. The data show clear-cut context effects modulated by
feedback in agreement with the ANCHOR model. The overall
direction is assimilatory—the average response levels in high
context (thick lines with triangular markers) tend to exceed those
in low context (thick lines with no markers). The ARL in group Ul
(uniform context) is between the ARLs in groups H1 and L1.

Importantly, the overall assimilatory tendency is attenuated or
even reversed during the no-feedback blocks. This feedback mod-
ulation is most evident for groups L1 and L2. As the presentation
frequencies are the same in both groups, the zig-zag pattern in their
ARL profiles is driven entirely by the feedback manipulation. In
particular, the highest ARL in the whole data set occurs during the
initial no-feedback period in group L2 (dashed line, trials 29-140).
Given the preponderance of short stimuli in this group, a high ARL
indicates a compensatory context effect. When feedback is intro-
duced in group L2 on trial 141, the average response level drops by
0.8 category units and the context effect becomes assimilatory. In
group L1, which is released from feedback at the same time, the
ARL increases by 0.4 units and the context effect becomes com-
pensatory. This context-by-feedback interaction is predicted by
ANCHOR and inconsistent with INST.

The statistical significance of these findings is confirmed by a
mixed-design ANOVA. For simplicity, group Ul and the initial
“warm-up” point on each ARL profile are not included. Context (H
and L) and order (feedback-first and no-feedback-first) enter as
between-subject factors; feedback (0—1) and period (1-4) enter as
within-subject factors. The temporal order of observations is
ignored. The significant main effect of context (F(1, 40) =
13.1, p < .001, 71,2; = .25) validates the overall assimilatory
context effect in Figure 2. The significant context-by-feedback
interaction (F(1, 40) = 17.7, p < .001, "q,z) = .31) validates the
feedback modulation of the context effect. Some higher-order
interactions are significant too (e.g., context by feedback by
order, F(1,40) = 13.3, p < .001, T]Iz, = .25). The main effect of
order is not significant (F(1, 40) < 1).

There is a significant main effect of the feedback factor (F (1,
40) = 20.9, p < .001, ”‘1;2> = .34). Averaged across all contexts, the
ARLs without feedback tend to exceed those with feedback. This
tendency is evident, for example, in the control group Ul in
Figure 2 (thin line). We attribute it to an idiosyncratic feature of
our experimental setting. In general, the participants tend to over-
estimate the length of our stimuli—the baseline ARL in our data
set (= 4.2, cf. trials 1-28) overshoots the halfway point (4.0) on
the scale. Similar overshoot was observed in earlier experiments
with these stimuli (Petrov & Anderson, 2005). Explicit feedback
tends to bring the ratings closer to ideal performance. That is, there
is downward pressure on the ARLs during the feedback blocks.
Without feedback, the pressure is released and the ARLs tend to
increase. This tendency amplifies the context-by-feedback inter-
action in low contexts and obscures it in high contexts. This
explains why the zig-zag pattern is much more pronounced for
groups L1 and L2 than for groups H1 and H2. The interpretability
of the data is not jeopardized, however, because the theoretically

5 The first period, which is always uniform, is only 28 trials long.
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Figure 2. Average response levels for the line-length ratings in Experi-

ment 1. Each line plots the mean of the 11 individual profiles in the
corresponding group. Group Ul: uniform context. Groups L1 and L2: low
context (frequent short stimuli; upward shifts indicate compensation).
Groups H1 and H2: high context (frequent long stimuli; upward shifts
indicate assimilation). The vertical grid lines mark transitions from feed-
back to no-feedback blocks or vice versa. Groups U1, L1, HI: feedback on
trials 1-140, 253-364. Groups L2 and H2: feedback on trials 1-28,
141-252, 365-476.

relevant interaction is strong enough to overcome this tendency.
In particular, the ARL in group H2 tends to be much lower
without feedback than with feedback. Once again, absence of
feedback promotes the compensatory context effect consistent
with ANCHOR.

Assuming the idiosyncratic tendency discussed above does not
interact with context, we can cancel it out by subtracting two ARL
profiles obtained in complementary contexts. Thus we define a
new dependent variable, Assimilation:

Assimilation = ARL (H) — ARL (L) 2)

Positive and negative values indicate assimilative and compen-
satory context effects, respectively. The ARL profiles in Figure 2
(ignoring the uniform group) combine into the assimilation pro-
files in Figure 3. The overall assimilative context effect is evident
from the positive sign of nearly all assimilation values. The mod-
ulatory effect of feedback is manifested in the interlocking zig-zag
pattern. Feedback blocks (marked by symbols) consistently show
more assimilation than the no-feedback blocks (no symbols).

Model Fits

To assess how well INST and ANCHOR can account for the
ARL profiles, each model was fitted to the data in Figure 2 by
minimizing the root mean square error (RMSE) between predicted
and observed ARLs (see Appendix B for details). ANCHOR fits
better (RMSE = 0.154) than INST (RMSE = 0.173) with the same
number of free parameters (Table B1 in Appendix B). Figure 4
plots the best-fitting ARL profiles and the corresponding assimi-
lation profiles.

Panels a and c in Figure 4 indicate that both models account for
the overall assimilative context effect in Figure 2. Also, both
models account for the tendency of the ARL to overshoot the
midpoint of the response scale. The models produce this tendency
by adjusting their correction thresholds so that upward corrections
are more frequent than downward corrections (see Appendix A for
details). This introduces a systematic upward drift of the average
response levels (Petrov & Anderson, 2005). The drift is stronger in
the absence of feedback and thus both models account for the
main effect of the feedback factor as well. The ARL drifts upward
when there is no feedback, regardless of context. The zig-zag
pattern in uniform context (the line labeled U1 in Figures 2 and 4)
is entirely driven by this effect.

Critically, ANCHOR accounts for the context-by-feedback in-
teraction whereas INST does not. The difference is apparent in
high contexts. When long stimuli are more frequent than short
ones, INST predicts higher ARLs in the no-feedback blocks rela-
tive to the feedback blocks (thick lines with triangular markers in
Figure 4, panel c). The pattern in the empirical data is exactly
opposite—the ARLs are lower without feedback, particularly dur-
ing the formative early period (Figure 2, trials 29-140). The
ANCHOR predictions in high contexts are in agreement with the
data. In low contexts, both models exhibit compensatory context
effects during the no-feedback blocks. These effects, however, can
be attributed to the main effect of feedback rather than the inter-
action between context and feedback. It so happens that in low
contexts, both the main effect and the interaction deflect the ARLs
upwards.

The interaction effects are easier to interpret if we subtract out
the context factor (Equation 2). Panels b and d in Figure 4 plot the
assimilation profiles predicted by the two models. The INST
profile never goes negative and shows little effect of the feedback

AU —— Feedback first
-0.8f | ‘ ‘ -=- No'—feedback first||
28 140 252 364 476
Trial

Figure 3. Context effects in the line-length rating task from Figure 2. The
average response level in low context [ARL(L)] is subtracted from that in
high context [ARL(H)] to measure assimilation. The vertical grid lines
mark transitions from feedback to no-feedback blocks or vice versa. The
assimilative effect is stronger in the feedback blocks (circles and squares)
than in the no-feedback blocks (plain lines). This interaction is predicted by
the prototype-based model but inconsistent with the instance-based model.
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Figure 4. Fits of the prototype-based (ANCHOR) and instance-based (INST) models. Panels a and c: Average
response levels (ARLSs). Each profile is based on 250 simulated runs. Line styles as in Figure 2 (thick lines with
triangular markers = high context, thick lines without markers = low context, thin lines = uniform control).
RMSE = root mean square error. INST predicts feedback effects in the wrong direction in high context. Panels
b and d: assimilation profiles corresponding to panels a and c. The vertical grid lines mark transitions from

feedback to no-feedback blocks or vice versa.

manipulation. By contrast, ANCHOR captures the crucial com-
pensatory tendency in the early no-feedback period (dashed line in
panel b). It also reproduces the interaction pattern in Figure 3, at
least qualitatively. The quantitative fit is not perfect because the
parameters were optimized with respect to ARL rather than assim-
ilation.

Qualitative Patterns Consistent With Each Model

As we have just seen, ANCHOR fits the average response level
profiles somewhat better than INST, but not dramatically better
(RMSE = 0.154 vs. 0.173). Neither fit is really spectacular. Is this
sufficient basis to prefer one model over the other? In addition to
goodness of fit, it is also important to consider the range of

qualitative patterns consistent with each model (Roberts & Pashler,
2000). To that end, the models were run with a range of parameter
values in a simulation experiment that mirrors Experiment 1. See
Appendix C for details on the simulation method.

Figure 5 plots the ARL profiles predicted by ANCHOR and
INST for a range of values of the so-called history weight param-
eter H. The pattern of context effects depended mostly on this
parameter. This is why we explored it systematically. Reasonable
variations of the other parameters did not introduce any qualita-
tively new patterns. Recall that memory retrieval in the models is
sensitive to two factors: (a) the similarity of each memory element
to the target and (b) the base-level activation of each memory
element. The history weight controls the strength of the second
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Figure 5. Average response levels (ARLs) predicted by the prototype-based (ANCHOR) and instance-based
(INST) models. Each panel reports a batch of runs with history weight H indicated above the panel. The six ARL
profiles correspond to the 3 X 2 factorial combinations of context and feedback. Thin lines: uniform context.
Thick lines with triangular markers: high context (frequent long stimuli; upward shifts in ARL indicate
assimilation). Thick lines with no markers: low context (frequents short stimuli; upward shifts indicate
compensation). Solid lines: feedback-first sequences. Dashed lines: no-feedback-first sequences. The vertical
grid lines mark transitions from feedback to no-feedback blocks or vice versa.

factor relative to the first (see Equation 12 in Appendix A).
Memory retrieval is driven by similarity when H is low, and by the
frequency and recency of past responses when H is high.

INST Predicts Assimilation

The instance-based model predicts assimilative context effects
for all values of H. Panel e in Figure 3 plots the ARL profiles for
H = 0; Panel f plots them for H = 0.70, which is a very high value
for this parameter. The average response level shifts upward in
high contexts and downward in low contexts. This assimilative
tendency is a parameter-free prediction of the instance-based
model. It is discernible for any parameter setting that generates less
than perfect accuracy.

The assimilative tendency is relatively insensitive to feedback.
The vertical grid lines in Figure 5 mark transitions from feedback
to no-feedback blocks or vice versa. The schedule is exactly the
same as in Experiment 1. The ARL profiles are slightly different
between feedback-first (solid lines) and no-feedback-first (dashed
lines) runs, but the sign of the context effect is assimilative in all

cases. This replicates the relative insensitivity to feedback in
INST’s fits to the empirical data in Figure 4, panel d.

Figure 6 shows the assimilation profiles corresponding to the
ARL profiles in Figure 5. The assimilative context effect is evident
from the positive values (Equation 2). INST’s assimilative ten-
dency tends to increase slightly in the no-feedback blocks (e.g.,
trials 140-252 on panel f, solid line). This is opposite to the
direction of the interaction effect in the empirical data (Figure 3,
trials 140-252, solid line).

ANCHOR Is More Flexible

The prototype-based model, on the other hand, can produce
three qualitatively different patterns of context effects illustrated in
Panels a—d of Figure 5. The assimilative influence of the base-
level learning counteracts the compensatory influence of the com-
petitive learning. When H is high, the assimilative influence dom-
inates and the average response levels resemble those of the INST
model as illustrated in Panels d and f in Figure 5. ANCHOR can
thus mimic INST. When H is low, the compensatory influence
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Figure 6. Context effects predicted by the prototype-based (ANCHOR) and instance-based (INST) models.
Each panel reports a batch of runs with history weight H indicated above the panel. Based on data in the
corresponding panels of Figure 5. The average response level in low context [ARL(L)] is subtracted from that
in the high context [ARL(H)] to measure assimilation. ANCHOR is consistent with context effects in either

direction, modulated by feedback.

dominates, but only during the no-feedback blocks. This produces
a strong context-by-feedback interaction. Panel a illustrates it for
the extreme case of H = 0, which shows the effects of competitive
learning in pure form. Consider the two feedback-first groups
(thick solid lines). Trials 1-140 and 253-364 are with feedback;
trials 141-252 and 365-476 are without. The flat segment up to
trial 140 shows that when both learning mechanisms are silenced,
there are no context effects. When feedback is discontinued, the
ARL shifts downward in high context and upward in low context.
This compensatory effect is driven by the inversion rule in com-
petitive learning. When feedback is reintroduced at trial 253, it
gradually resets the anchors to their home positions and the ARLs
converge back to the baseline. The no-feedback-first groups show
a complementary pattern (thick dashed lines).

The corresponding assimilation profiles (Figure 6) further illus-
trate these points. In particular, panel b demonstrates that
ANCHOR can produce the qualitative pattern in the human data
(Figure 2). When the history weight is such that base-level learning
is allowed to operate but is weaker than competitive learning,
ANCHOR predicts compensation during the initial no-feedback
segment (dashed line, trials 29—-140), assimilation during the initial

feedback segment (solid line), and continual context-by-feedback
interaction during the subsequent segments.

Discussion

These qualitative considerations are our main basis for prefer-
ring the anchor-based model. Its superior quantitative fit reinforces
the same conclusion. However, there is an alternative interpreta-
tion in terms of response bias (Parducci, 1974). A compensatory
context effect can occur when the observers try to use all scale
values equally often. The observed interaction effect can occur
when the response bias is weaker with feedback than without.

The tendency of all ARLs in Experiment 1 to creep upward in
the no-feedback blocks also complicates the interpretation of the
data. We attributed it to an idiosyncratic feature of our stimuli.
They were equally spaced but did not form a sequence with zero
intercept—Stimulus 1 was not half as long as Stimulus 2, etc. Even

¢ The flat segment also validates that the estimated ARLs remain unbi-
ased even when the raw data are collected in skewed contexts.
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though the instructions explicitly asked for an interval rather than
ratio scale, some participants may have tried to preserve stimulus
ratios (Stevens, 1957). If this strategy tended to overestimate the
short stimuli more than the long ones, it could give rise to an
upward bias in the average response levels. Our analyses assume
that this bias does not interact with context and thus can be
subtracted out. The assimilation measure in Equation 2 depends on
this assumption. However, there may be a weak interaction be-
tween the upward bias and context. It is obvious that Stimuli 2 and
1 are not in a 2:1 ratio, but it is not obvious that Stimuli 9 and 8
are not in a 9:8 ratio. Thus, the upward bias may be stronger at the
low end than the high end of the scale.

We ran a second experiment with different stimuli and tighter
controls to rule out these alternative interpretations and test the
generalizability of our results.

Experiment 2

Experiment 2 improves on Experiment 1 in three ways. First and
foremost, the overall response-category frequencies are always
uniform under the new design. A perfect responder will press each
of the 7 response keys an equal number of times in each block.
This makes it highly unlikely that response bias plays a significant
role in this study. The context manipulation is preserved, but two
different types of stimuli are mixed in each block, with presenta-
tion frequencies skewed in complementary directions. Concretely,
there are motion stimuli and texture stimuli. The participants are
instructed to rate the speed of motion on a scale of 1 = “slowest”
to 7 = “fastest” and to rate the coarseness of texture on a scale of
1 = “lowest” to 7 = “highest.”

We chose stimulus types that are as different from each other as
possible in order to minimize the cross-talk between the two tasks
in memory. When a motion stimulus is presented, for example,
only motion anchors or instances compete to match it. Those
involving textures are too dissimilar to ever be retrieved. If this is
correct, Experiment 2 consists of two independent replications of
Experiment 1.

The third improvement is the introduction of a monetary bonus
contingent on accuracy. The bonus motivates the participants to
use the interval scale prescribed by the instructions and to cast
aside any a priori preferences for ratio scales, uniform frequencies,
etc.

Method

Observers.  Forty-one participants at Ohio State University
were paid $6 plus a bonus that varied between $2.50 and $4.50,
depending on their accuracy.

Stimuli and apparatus. Each motion stimulus consisted of
150 black dots that moved coherently inside a grey circular aper-
ture. The direction of motion was randomized across trials but all
dots on a given trial moved in the same direction. The speed of
each individual dot was constant throughout the lifetime of the dot
and was drawn from a Gaussian distribution (e.g., Watamaniuk,
Sekuler, & Williams, 1989). The mean of this Gaussian was 6, 7,
8, ..., 12 degrees per second for categories 1, 2, 3, ..., 7,
respectively.” The standard deviation of the Gaussian was propor-
tional to the mean (1 deg/sec for the slowest and 2 deg/sec for the
fastest category). The participants were instructed to rate the

average speed of the cloud of dots. The diameter of the aperture
was 7 degrees of visual angle. As dots exited the aperture, they
were replaced® with freshly sampled dots.

The texture stimuli were filtered-noise patches (Figure 7). Seven
filters H, were defined for the 7 categories k. Each filter had a
Gaussian cross-section in the frequency domain:

Hifof) = N, exp{ ,%[u + f—] }
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Equation 3 describes the amplitude profile of a Gabor wavelet
(windowed sinusoidal grating) with spatial frequency ¢, (Graham,
1989). The normalization constants N, were chosen so that all
filters had equal spectral energy. To generate one texture from a
given category k, the algorithm generated a fresh matrix of iid
Gaussian noise and applied the corresponding filter H,. The center
frequencies ¢, were inversely related to the category labels k in a
geometric progression with parameter ¢ = 0.4 octaves (Equation
4). The “coarseness” of the texture was operationalized as the
wavelength N\, = 1/c,. It varied from A\; = 0.19 to \;, = 1.0
degrees per cycle as illustrated in Figure 7.
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The frequency bandwidth parameter b in Equation 5 controlled
the uncertainty in spatial frequency. It was b = 0.5 octaves for all
categories (full width at half height, in log-frequencies). The
orientation bandwidth parameter 6 in Equation 6 controlled the
uncertainty in orientation. It was 8 = 45 degrees for all® catego-
ries. All textures were generated at vertical orientation and then
rotated at a random angle.

All stimuli—moving dots and static textures—were generated in
Matlab in real time and presented on a 21" NEC AccuSync 120
CRT at 96 frames/sec using PsychToolbox (Brainard, 1997) A
software lookup table defined 255 evenly spaced luminance levels
between L,,;,, ~ 2 cd/m” and L,,,,. ~ 118 cd/m>. The displays were
viewed binocularly from a chin rest placed 93 cm from the mon-
itor.

Procedure. The participants were instructed that each block
consisted of an equal number of motion and texture trials presented
in random order and that there were feedback and no-feedback
blocks. Nothing was mentioned about presentation frequencies

7 We could not use a sequence with zero intercept because a parallax-
like effect made the dot clouds appear to rotate rather than move sideways
when the average speed was too low.

8 Care was taken to correct the attrition bias that occurred as fast dots
exited the aperture more often than slow dots.

° The standard deviation 0,y in Equation 6 is proportional to the central
frequency c, for technical reasons involving a conversion from polar to
Cartesian coordinates (Graham, 1989).
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Figure 7. Sample filtered-noise texture stimuli for Experiment 2. Left:
category 1, lowest “coarseness” (shortest wavelength). Right: category 7,
highest “coarseness” (longest wavelength). Each patch was clipped within
a circular aperture with diameter 7 degrees of visual angle. The orientation
was randomized.

within either stimulus type. The task was to rate the average speed
of motion and the coarseness of the texture with a number from 1
to 7. A brief demonstration presented examples of the slowest and
fastest motion and of the finest and coarsest texture. The partici-
pants earned one bonus point for each correct answer. The current
cumulative bonus was displayed above the fixation dot at all times
except during the no-feedback blocks.

Each trial began with a brief beep. The stimulus was presented
in the middle of the screen against gray background 500 ms later
and continued until the observer pressed a key from 1 to 7. Invalid
keys were ignored. Then the screen was cleared and a big white
feedback digit (or an “X” in no-feedback blocks) appeared for
1,100 ms. Each session lasted about 50 minutes and consisted of
700 trials.

Design.  Block 1 had 28 trials; Blocks 2—-13 had 56 trials.
Block 1 presented 2 motions and 2 textures of each category, with
feedback, in random order. The presentation frequencies in sub-
sequent blocks varied in complementary ways depending on con-

text: fast-low (FL) blocks contained 1, 2, 3, . . ., 7 presentations of
motion stimuli 1, 2, 3, ..., 7, respectively, and 7, 6, 5, ..., 1
presentations of texture stimuli 1, 2, 3, ..., 7. In slow-high (SH)

blocks the skewness of the two stimulus types was reversed. Note
that a perfect responder would press each of the seven response
keys eight times in each block regardless of context.

The participants were randomly assigned to four groups. Groups
1 (fast-low 1) and 2 (fast-low 2) presented 1 uniform block
followed by 12 FL blocks. Groups 3 (slow-high 1) and 4 (slow-
high 2) presented 1 uniform block followed by 12 SH blocks. The
feedback-first groups 1 and 3 gave veridical feedback on blocks
1-4, 8-10 and no feedback on blocks 5-7, 11-13. The no-
feedback-first groups 2 and 4 gave no feedback on blocks 2—4,
8—10 and veridical feedback on blocks 1, 5-7, 11-13.

Dependent variable. The dependent variable is the same as
in Experiment 1—the average response level (ARL) calculated
according to Equation 1. The two stimulus types are processed
separately: 350 motion and 350 texture trials per participant. Each
stimulus-response sequence is segmented into nine non-
overlapping periods. Period 1 covers the initial uniform block and
has 14 trials (per stimulus type). Period 2 covers block 2 and the
first half of block 3 and has 42 trials. Period 3 covers the second

half of block 3 and the entirety of block 4 and also has 42 trials.
Periods 4 through 9 cover blocks 5 through 13 in an analogous
fashion, each period spanning a block and a half and having 42
trials. The coefficients R, and a of the Stevens function are
estimated by linear'® regression from the 42 stimulus—response
pairs in each period. The average response level for this period is
ARL = R, + 4a, where 4 is the code of the middle stimulus. This
procedure converts the raw data to two profiles—nine motion
ARLs and nine texture ARLs.

Results and Discussion

Figures 8 and 9 plot the mean ARL profiles for the motion-
speed and texture-coarseness rating task, respectively. The line
styles are the same as in Figure 2 to facilitate comparison with the
line-length rating task of Experiment 1. The data show strong
context effects, this time in a compensatory direction. The average
response levels in fast motion context (lines with triangular mark-
ers in Figure 8) are consistently lower than those in slow context
(lines with no markers). The compensatory effect is equally clear
in the texture data—the ARLs in high (or coarse) context are lower
than those in low context (Figure 9). Both context effects are
highly significant (motion F(1, 37) = 21.4, p < .001, nf, = .37;
texture F(1, 37) = 344, p < .001, T],z, = .48; mixed-design
ANOVA as in Experiment 1).

This compensatory context effect falsifies the INST model (cf.
Figure Se, f) and challenges instance-based theories in general.
The response-bias explanation does not seem to answer this chal-
lenge adequately. While it is impossible to rule out this explanation
completely, it depends on the implausible assumption that the
observers can keep separate counts of the response frequencies for
the two stimulus types. Even if we assume for the sake of the
argument that the participants could implement such bias and were
willing to forfeit valuable bonus points in the process, it still
remains unclear why the compensatory tendency is so much stron-
ger in Experiment 2 than in Experiment 1.

ANCHOR, on the other hand, can generate compensatory con-
text effects as discussed above. In fact, the empirical profiles in
Figures 8 and 9 are very similar to the ANCHOR profile in
Figure 3a. The base-level activations in ANCHOR (and ACT-R
more generally) have a strong but transient recency component
(Equation 10 in Appendix A; see Petrov, 2006, for illustrative plots
of the activation dynamics). When trials of different types are
mixed in a block, each type dilutes the residual activation of the
other. Thus, ANCHOR predicts weaker assimilation in heteroge-
neous blocks than in homogenous blocks. This is exactly what we
found—a compensatory effect in Experiment 2 and an assimilative
effect in Experiment 1. Modeling this phenomenon in detail is a
promising topic for future research.

Experiment 2 replicates the context-by-feedback interaction,
particularly in the motion data. The zig-zag interaction pattern is
most pronounced in Figure 8. Consider trials 15-98 for concrete-
ness. With feedback (groups 1 and 3, solid lines), there is hardly
any context effect during this period. Without feedback (groups 2

19 The correlation between the group-averaged ratings and the correct
labels is 0.998 for motion and 0.997 for texture. Thus, the Stevens func-
tions seem locally linear for our stimulus ranges.
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Figure 8. Average response levels for the motion-speed ratings in Ex-
periment 2. Each line plots the mean of the individual profiles in the
corresponding group. Groups 3 and 4: slow context (frequent slow stimuli;
upward shifts indicate compensation). Groups 1 and 2: fast context (fre-
quent fast stimuli; upward shifts indicate assimilation). The vertical grid
lines mark transitions from feedback to no-feedback blocks or vice versa.
Groups 1 and 3: feedback on trials 1-98, 183-266. Groups 2 and 4:
feedback on trials 1-14, 99-182, 267-350.

and 4, dashed lines), there is a massive compensatory effect. When
feedback is discontinued in groups 1 and 3, their ARLs diverge
(trials 99-182); whereas when feedback is introduced in groups 2
and 4, their ARLs converge.
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Figure 9. Average response levels for the texture-coarseness ratings in
Experiment 2. Each line plots the mean of the individual profiles in the
corresponding group. Groups 1 and 2: low context (frequent fine stimuli;
upward shifts indicate compensation). Groups 3 and 4: high context (fre-
quent coarse stimuli; upward shifts indicate assimilation). The vertical grid
lines mark transitions from feedback to no-feedback blocks or vice versa.
Groups 1 and 3: feedback on trials 1-98, 183-266. Groups 2 and 4:
feedback on trials 1-14, 99182, 267-350.

The context-by-feedback interaction is statistically significant in
the motion data (F(1, 37) = 28.6, p < .001, n,z, = .44) but not in
the texture data (F(1, 37) < 1). This is driven by a general
tendency of the texture ARLs to drift downwards during the
no-feedback periods. The significant main effect of the feedback
factor (texture F(1, 37) = 15.0, p < .001, nf, = .29) obscures the
context-by-feedback interaction. The predicted zig-zag pattern is
still evident in the high groups in Figure 6 (triangular markers). In
the low groups (no markers), however, the pattern is eliminated,
even reversed perhaps. Recall that Experiment 1 produced analo-
gous results, but there the ARLs tended to drift upwards without
feedback. Thus, the interaction was strong in the low groups in
Figure 2 and weak in the high groups. Here it is the other way
around. That a main effect can mask an interaction is well docu-
mented in the statistical literature (e.g., Keppel & Wickens, 2004).
The length ARLs drifted upwards, the texture ARLs downwards.
The motion ARLs are just right (no significant effect of feedback,
F(1, 37) < 1) and reveal the interaction in purest form.

We subtracted the ARL profiles obtained in complementary
contexts (Equation 2) to calculate the assimilation profiles in
Figures 10 and 11. The overall compensatory context effect is
evident from the consistently negative values. Note that assimila-
tion ~ 0 during the initial uniform block (trials 1-14). The motion
profile (Figure 10) is strikingly similar to the ANCHOR profile for
low history weights (Figure 6a). The zig-zag pattern of Figure 3 is
clearly replicated. The pattern is also discernible in the texture data
(Figure 11).

Figure 11 contains two anomalous points in the feedback-first
condition (solid line, trials 15-98). These are incompatible with
ANCHOR (or INST). Tracing the problem back to Figure 6, it
seems that the corresponding ARLs for group 1 (low 1) are
anomalously high (or that the subsequent ARLs have drifted
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Figure 10. Context effects in the motion-speed rating task from Figure 8.
The average response level in slow context [ARL(Slow)] is subtracted
from that in fast context [ARL(Fast)] to measure assimilation. The vertical
grid lines mark transitions from feedback to no-feedback blocks or vice
versa. The consistently negative values indicate a compensatory context
effect. It is stronger in the no-feedback periods (plain lines) than in the
feedback periods (circles and squares). Both effects are predicted by the
prototype-based model but inconsistent with the instance-based model.
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Figure 11. Context effects in the texture-coarseness rating task from

Figure 9. The average response level in low context [ARL(Low)] is
subtracted from that in high context [ARL(High)] to measure assimilation.
The consistently negative values indicate a compensatory context effect,
which is inconsistent with the instance-based model.

downwards as discussed above). We have no good explanation for
this. Given the noise in the data, however, it is not surprising to
find two anomalous values among the 117 points in Figures 2, 8,
and 9. The compensatory effect during the late feedback blocks in
Figure 9 are probably carried over from the preceding no-feedback
blocks.

In conclusion, Experiment 2 replicated and improved upon
Experiment 1. The motion data are particularly convincing. The
compensatory main effect of context and the context-by-feedback
interaction rule out INST as a viable model of human category
rating. ANCHOR, on the other hand, offers a natural and elegant
account of this complex and interlocking behavioral pattern.

General Discussion

We presented evidence of assimilative (Experiment 1) and com-
pensatory (Experiment 2) context effects in category rating with
diverse stimulus sets. External feedback can reverse the direction
of the context effect. These findings constrain the theory of direct
psychophysical scaling and contribute to our understanding of how
ratings are produced by human observers. They also constrain the
theory of categorization.

Prototype- and exemplar-based theories make distinct predic-
tions about the direction of context effects and their modulation by
feedback. Computer simulations with representative members of
each model class indicated that prototype-based models can ex-
hibit both assimilatory and compensatory context effects, whereas
instance-based models must always assimilate. Thus, the unitary
constraint on the representational flexibility of the system can
increase its behavioral flexibility via the inversion rule (Figure 1).
Prototype-based categories cannot increase their coverage on the
magnitude continuum without decreasing coverage on the opposite
side. This generates a compensatory tendency that counteracts the
natural assimilative tendency in skewed contexts. These opposing

forces can produce in ANCHOR an overall context effect in either
direction (Figure 5).

Does this mean that ANCHOR is just too flexible and can fit
anything but explain nothing (Roberts & Pashler, 2000)? The
answer is an emphatic no because ANCHOR makes principled
predictions about how context interacts with other variables
(Petrov & Anderson, 2005). First, the assimilation originates in the
base-level activation mechanism and hence any manipulation that
weakens the activations should reduce the assimilative tendency in
the data. This is what we found in Experiment 2. Mixing two
stimulus types in the same block dilutes the recency component of
the base-level activations of the anchors for each type. Thus, the
behavioral pattern resembles the ANCHOR pattern generated with
low history weight (Figure 5a). Second, the compensation origi-
nates in the competitive learning mechanism and hence any ma-
nipulation that constrains the anchor locations should reduce the
compensatory tendency in the data. External feedback is one such
manipulation. Petrov and Anderson (2005) demonstrated compen-
satory effects without feedback and assimilative effects with feed-
back. These studies manipulated context within and feedback
between subjects. Here we replicate this result with the comple-
mentary design. ANCHOR, but not INST, makes a parameter-free
prediction that the compensatory tendency in skewed contexts
should be suppressed by feedback, leading to a characteristic
zig-zag pattern. This is exactly what was observed.

In conclusion, the evidence suggests that category rating is
based on unitary representations. Prominent theorists (e.g., Nosof-
sky & Johansen, 2000; Nosofsky & Zaki, 2002) have argued that
people use instance-based representations in all categorization
tasks. The present results identify a limit to such all-encompassing
statements. Instance-based theories, despite their spectacular suc-
cess in many other tasks, do not seem applicable to category rating
without feedback.

Potential Challenges to Our Conclusions

INST retrieves a single exemplar per trial. While such single-
exemplar proposals are not unprecedented (e.g., Ennis, Palen, &
Mullen, 1988), most instance-based theories posit that the proba-
bility to classify a stimulus under a category is proportional to its
aggregate similarity to all prior instances of this category. Thus,
critics might argue that the failure of INST to fit our data does not
constrain mainstream instance-based theory. A straightforward
response to such criticism would be to fit the Generalized Context
Model (Nosofsky, 1986) to our data. The problem is that GCM
cannot do the no-feedback task. Without the stabilizing influence
of a correction mechanism, a winner-takes-all dynamics sets in
during the no-feedback blocks (Petrov & Anderson, 2005). The
correction mechanism requires the retrieval of an individuated
memory element on each trial. The corrections are based on the
discrepancy between the remembered location and the target lo-
cation (see Equation 14 in Appendix A).

All categorization models make representation assumptions and
retrieval assumptions (see Ashby, 1992, for an excellent review).
Our answer to the above criticism is that INST does embody the
representation assumption central to all instance-based theories. It
represents each category as a collection of instances in memory.
Any model with non-unitary representations will fail to account for
the compensatory tendencies in our data for the same reason that
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INST fails. The fundamental problem is that similarities always
add (see Equation 17 in Appendix A) and thus a category can
never lose strength in some region as it accrues a member in
another region.

GCM has been extended to incorporate the idea that dissimilar-
ity may play a role in categorization decisions. The similarity-
dissimilarity model (SD-GCM ) (Stewart & Brown, 2005) assumes
that the evidence for a category is the summed similarity to
instances of that category plus the summed dissimilarity to in-
stances of the opposite category. SD-GCM is motivated by the
category contrast effect: the classification of a borderline stimulus
is more accurate when preceded by a distant member of the
opposite category than when it was preceded by a distant member
of the same category (Stewart et al., 2002; Stewart & Brown,
2004). The problem with this approach is that it only works for
binary classifications. Attempts to extend it to the rating task lead
to highly implausible predictions. For example, SD-GCM predicts
a strong tendency to respond 1 in high contexts because any short
stimulus will be very dissimilar to the numerous long exemplars in
memory. A further problem with SD-GCM is its apparent inability
to account for the interaction between context and feedback that is
the critical feature of our data.

In a different experimental paradigm, Smith and Minda (1998,
2000, 2002; Minda & Smith, 2001, 2002) documented many
circumstances in which prototype models outperform instance-
based models. Their results were challenged in various ways
(Nosofsky, 2000; Nosofsky & Johansen, 2000; Nosofsky & Zaki,
2002; Stanton et al., 2002; Zaki et al., 2003). One controversy
involves the response-scaling parameter <y in instance-based mod-
els (Smith & Minda, 1998, 2002; Myung et al., 2007). Nosofsky
and Zaki (2002) argued that models without such parameter are
artificially constrained. As our INST model lacks this particular
parameter, our conclusions may seem vulnerable to the same
criticism. They are not because they rest on qualitative patterns in
the data rather than goodness of fit. INST’s fundamental limitation
in our paradigm is its inability to produce compensatory context
effects. This is a structural limitation that cannot be circumvented
by the introduction of a parameter that makes responding more or
less deterministic.

Prototype models have also been challenged for being prone to
overfitting (Olsson et al., 2004). Our simulations indicate that
ANCHOR can indeed produce a broader range of qualitative
patterns than INST (Figure 5). In that regard, the important out-
come of the present experiments is that INST cannot fit the data,
not that ANCHOR can. Note also that some potential outcomes
could have falsified ANCHOR too. For example, it cannot fit
compensatory context effects during trials 29-140 in the feedback-
first condition.

The Importance of Inductive Bias

It is not surprising to find evidence for unitary representations in
category rating because they match the statistical structure of the
target categories. Assigning a label to a novel exemplar is a form
of induction. As such, it necessarily depends on a priori assump-
tions about the structure of categories Hume (1748/2007). Every
representational scheme implicitly embodies such inductive bias.
The foundational assumption of all memory-based classifiers is
that similar items belong to the same category. In statistical ter-

minology, the similarity-based inductive bias amounts to the as-
sumption that categories have smooth probability density functions
(Ashby & Alfonso-Reese, 1995; Nosofsky, 1990). Instance-based
representations are equivalent to kernel density estimators and
make no assumptions besides smoothness (Ashby & Alfonso-
Reese, 1995). Prototype representations embody the additional
assumptions of unimodality and symmetry. These are the condi-
tions in which a distribution is well represented by its mean. In
environments in which these assumptions are satisfied, the bias
speeds up learning, improves classification accuracy, reduces the
need for external feedback, and increases robustness. This is the
case in category rating, where categories are contiguous regions on
a unidimensional continuum and there are no exceptions. A pro-
totype representation anticipates the regularities in these simple
domains (Huttenlocher et al., 2000).

Flannagan, Fried, and Holyoak (1986) present convincing evi-
dence that human observers are biased in favor of unimodal
distributions. It was faster to learn a unimodal than a bimodal
category. Also, subjects in the early stages of learning a bimodal
category responded as if it were unimodal.

The compensatory tendencies in our data suggest an inductive
bias for symmetry. Prototype-based representations enforce such
symmetry; instance-based representations merely allow it. A bias
for symmetry is beneficial for our task, even in non-uniform
contexts, assuming symmetric perceptual noise. This is because
each category in our experiment consists of a single stimulus. With
feedback, both prototype- and instance-based systems converge to
symmetric representations and thus behave identically. Without
feedback, however, the systems’ own mistakes violate the sym-
metry of categories. In skewed contexts, more misclassifications
are made toward the frequent end of the continuum. This skews the
representations in INST but not in ANCHOR where the unitary
constraint enforces symmetry and thereby counteracts the destabi-
lizing contextual influence.

Analyzing the two classes of systems in terms of their inductive
biases helps explain why the decisive test occurs during the no-
feedback blocks. The absence of feedback forces the system to rely
on prior knowledge. Strongly biased systems have an advantage
over weakly biased systems, provided of course that the bias
matches the structure of the environment. Prototype-based systems
have the strongest bias, followed by decision-bound systems,
followed by instance-based systems (Ashby & Alfonso-Reese,
1995). All documented failures of prototype-based models (e.g.,
Ashby & Gott, 1988; Ashby & Maddox, 1992, 1993; Medin &
Shaffer, 1978; Nosofsky, 1992; Nosofsky et al., 1994; Nosofsky &
Zaki, 2002) involve tasks that violate one or more prototype
assumptions. The strong inductive bias of prototype-based systems
is counterproductive in those cases.

Long training sessions with feedback reduce the importance of
prior knowledge. In Bayesian terms, the likelihood dominates the
prior. Systems with noninformative priors can behave optimally in
such circumstances and instance-based models provide excellent
accounts of the asymptotic strategy. This is consistent with con-
verging evidence for “a progression from a strong reliance on proto-
types to a strong reliance on exemplar memorization” (Smith &
Minda, 1998, p. 1412). In that regard, it is notable that ANCHOR
outperforms INST after more than 400 presentations of our seven
stimuli. We attribute this to the confusability inherent in unidi-
mensional perceptual continua.
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Such behavioral data are very informative but should be inter-
preted with care because the link between behavior and the un-
derlying representation is not always straightforward. In the cur-
rent study, for example, the model with greater representational
flexibility (INST) has lesser behavioral flexibility. The study of
Nosofsky and Stanton (2005) is another example. It involved
two-dimensional stimuli (Munsell color chips), binary classifica-
tion, and probabilistic feedback for certain “critical” stimuli. In an
ingenious manipulation, both categories had asymmetrical,
kidney-shaped densities but the asymmetry of Category A mir-
rored that of Category B so that the optimal decision bound was
still linear. Thus, a prototype-based classifier would maximize
performance even though it misrepresented the kidney-shaped
densities. The inductive bias of a prototype representation is that
each individual category is symmetrical, not that the constellation
of categories is symmetrical. Only an instance-based scheme can
represent kidney-shaped categories. Ironically, these accurate rep-
resentations predict slower and less accurate responses to the
critical stimuli in Nosofsky and Stanton’s (2005) configuration.
The data favored the instance-based model. One interpretation of
this finding is that the objective of the human system is not only to
optimize performance on the current task but also to build an
accurate internal model of the environment in anticipation of
future tasks. Such combination of task-driven and model learning
has been shown to generalize better than purely task-driven learn-
ing in neural networks (O’Reilly, 2001).

Related Research

Cohen, Nosofsky, and Zaki (2001) manipulated category vari-
ability in ways similar to our context manipulation. An equidistant
transfer stimulus was more likely to be classified into a low-
variability than a high-variability category. This is analogous to the
compensatory context effects in our paradigm and is consistent
with ANCHOR. However, further increases of the variance of the
high-variability category increased the probability to classify the
transfer stimulus into it, which is consistent with neither ANCHOR
nor INST. Subsequent experiments revealed complications (Stew-
art & Chater, 2002). This is a topic for further investigation.

There is a middle ground between prototype- and instance-based
classifiers. It is to store several memory elements per category but
significantly fewer than the total number of exemplars encountered
so far (e.g., Busemeyer et al., 1984; Homa, Dunbar, & Nohre,
1991; Smith & Minda 2000). One advanced model along those
lines is SUSTAIN (Love et al., 2004). It creates new elements (or
clusters) only when a surprise occurs. With feedback, that is when
the teacher corrects the model’s response; without feedback, a
surprise occurs when the similarity between a new item and any
existing cluster is less than a threshold parameter. By varying this
threshold, SUSTAIN can enforce the unitary constraint to varying
degrees. The model begins with simple representations and intro-
duces complexity only when necessary. It is designed for multi-
dimensional spaces and is equipped with the requisite attentional
machinery. It is not well equipped to handle context effects in
category rating but can be extended with base-level activations and
a correction mechanism. Would such an extended version be
compatible with our data? The answer is no. To capture the
compensatory context effects, SUSTAIN must keep a single clus-
ter per response category. This may seem a simple matter of setting

the recruitment threshold high. However, a problem occurs during
the feedback blocks. SUSTAIN will make mistakes and be “sur-
prised” by the feedback. Many mistakes will be blamed on the
decision procedure but some trace back to irreducible perceptual
overlap (B. Love, personal communication, April 30, 2008). These
irreducible surprises will recruit multiple clusters for every re-
sponse category. Thus, SUSTAIN seems bound to behave as an
instance-based model in all tasks with perceptually confusable
stimuli.

The Relative Judgment Model (RIM) (Stewart, et al., 2005) and
the Memory and Contrast model (MAC) (Stewart et al., 2002;
Stewart & Brown, 2004) emphasize the importance of a compar-
ison process that calculates differences between magnitudes. We
agree that relative judgments are important and incorporate them
in ANCHOR’s correction mechanism. Memory retrieval in
ANCHOR is based on absolute magnitudes whereas corrections
are based on differences. The interplay between these two factors
allows ANCHOR to work without external feedback, which nei-
ther RIM nor MAC can do.

This article focused on the distinction between prototype and
instance-based models. Decision-bound models are another prom-
inent class in the categorization literature (e.g., Ashby & Gott,
1988; Ashby & Maddox, 1993; Ashby & Townsend, 1986; Mad-
dox & Ashby, 1993; Treisman & Williams, 1984). Under some
reasonable assumptions, prototype models are equivalent to
minimum-distance classifiers with linear bounds (Ashby & Gott,
1988; Ashby & Alfonso-Reese, 1995). The strict mathematical
proof does not apply to ANCHOR because of its correction mech-
anism, which is an innovation relative to all decision-bound the-
ories. Still, all these theories seem consistent with the outcome of
the present experiment—that category rating is based on unitary
representations. With unidimensional stimuli, decision bounds are
just points on the continuum and the system needs N — 1 criteria for
N response categories (Torgerson, 1958; Treisman & Williams,
1984). Thus, the complexity of the internal representation is tied to
the number of categories rather than the number of trials. In that
sense, decision bounds are unitary representations consistent with
our data. The Category Density Model (Fried & Holyoak, 1984)
formalizes this idea. It assumes that category representations
are (multivariate) Gaussians and incrementally updates the
means and variances of these Gaussians. Decision bounds are
then derived from likelihood ratios (Ashby & Townsend, 1986;
Fried & Holyoak, 1984).

A growing number of theories posit two or more systems for
categorization (e.g., Ashby & EIll, 2001; Ashby et al., 1998;
Erickson & Kruschke, 1998; Nosofsky et al., 1994). A common
assumption in these theories is that the different systems compete
to categorize a given stimulus. ANCHOR also has multiple mech-
anisms but they cooperate rather than compete. ANCHOR’s mem-
ory system is implicit, whereas its correction mechanism is explicit
(cf. Ashby et al., 1998). The former is automatic, tracks the
statistics of the environment, and is responsible for the “first
guess” on each trial. Human observers, however, often second-
guess themselves. This is captured by ANCHOR’s explicit correc-
tion strategy. It embodies knowledge about the number and order
of categories and generates the stimulus-response homomorphism
that is the defining feature of scaling. The cooperative interaction
between the implicit and explicit components in ANCHOR is
crucial for its ability to unfold the scale and maintain stability in
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non-uniform and nonstationary environments without feedback
(Petrov & Anderson, 2005).
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Appendix A

Model Equations and Parameters

ANCHOR and INST are governed by a set of mathematical
equations that define conditional probability distributions of the
following five variables: stimulus S, target magnitude M, anchors
A,, correction /, and overt response R. The perceptual processing in
both models is described by Equation 7 that converts the stimulus
intensity S into an internal magnitude M. The exponent n = 1.0 is
determined from Stevens power law for line length'' (Stevens,
1957; Stevens & Galanter, 1957). The scaling factor a is set
arbitrarily to 1/1000 so that magnitudes fall in the 0—1 range. The
perceptual noise €, is drawn from a Gaussian distribution with zero
mean and unit variance. Because of the multiplication in Equation
7, the standard deviation of the magnitude distribution is propor-
tional to its mean. The coefficient k, = 0.04 is estimated from the
Weber fraction for line length (Petrov & Anderson, 2005). Equa-
tion 7 is consistent with both Weber’s and Stevens’s laws. An
alternative, additive-noise equation can also be used without alter-
ing the predictions of the theory (Petrov, 2008).

M=aS" (1 +k,¢,) @)

The magnitude A; of each anchor i on a given trial is a noisy
perturbation of its current location L,. The memory-noise Equation
8 is analogous to the perceptual Equation 7. A new perturbation €,
is drawn for each element on each trial from a Gaussian distribu-
tion with zero mean and unit variance. The coefficient k,, is a free
parameter that scales the memory noise.

A; =L, (1 +k,¢€,) for each element i ®)

Each anchor has a base-level activation B; that quantifies its
availability as a function of the history of prior uses of the
corresponding response. The base-level Equation 9 is taken ver-
batim from the ACT-R architecture (Anderson & Lebiere, 1998, p.
124). It is a logarithm of a sum of powers with decay rate d = 0.5.
Each new use of the anchor adds another term to this sum, which
then decays independently. The total count so far is denoted by n,
and ¢, are the individual time lags from the present.

B=1In| > 5* 9)

2(n—1)
B=In| ;2" + ——F— 1

T (10)

As Equation 9 is expensive to compute, all ANCHOR simula-
tions use the approximate Equation 10 (Petrov, 2006). It retains
only three critical pieces of information about the anchor: the time
since its creation t,,, the time since its most recent use #,,,, and the
total number of uses n. The approximation preserves the three
qualitative features of the activation dynamics: (a) sharp transient
peak immediately after each use, (b) decay in the absence of use,
and (c) gradual buildup of strength with frequent use. The third
property drives ANCHOR’s tendency for assimilative context ef-

fects under skewed stimulus distributions. The first property ex-
plains why this tendency is diminished when stimuli of different
types are mixed within a block in Experiment 2.

Because each exemplar in INST is used only once, the sum in
Equation 9 contains only one term. This produces the simple decay
Equation 11. Thus, the activation of an exemplar in INST equals
the activation of an anchor in ANCHOR that has been created
on the same trial as the exemplar and has not been used ever since.
The buildup of strength with frequent use is driven in INST by the
accumulation of separate instances.

B=Int,=—dInty an

The memory elements compete to match the target M on each
trial. This competition is governed by two equations. Equation 12
produces goodness scores G,, and the softmax Equation 13 con-
verts them into selection probabilities P,. Only one element is
selected per trial.

Gi= —|M—-A|+HB (12)

B exp(G/T)
Fi= E exp(G,/T) 13)

u

Each goodness score G, is a sum of two terms: similarity
|M — A,| and history H B,. The history weight parameter H controls
the relative strength of these factors. The direction of context
effects (assimilative or compensatory) in ANCHOR depends
mostly on this parameter (see Figures 5 and 6). The temperature
parameter 7 controls the stochasticity of the softmax selection.
Values close to zero produce deterministic choice, whereas large
values result in nearly random sampling.

Equations 12 and 13 follow the ACT-R notational convention
(Anderson & Lebiere, 1998). The influential Generalized Context
Model (GCM) (Nosofsky, 1986) uses a different notation in which
the exponentiation is incorporated into the definition of similari-
ties. ACT-R’s temperature 7 is the inverse of GCM'’s sensitivity
parameter c. The two formulations are mathematically equivalent,
except that GCM treats exemplar strengths as free parameters
whereas the base-level activations in INST are grounded in the
rational analysis of memory (Anderson & Milson, 1989).

The winning anchor (in ANCHOR) or instance (in INST) rep-
resents the “first guess” about the classification of the current
stimulus. It provides a reference point for the correction mecha-
nism, which is the same in both models. The target magnitude M
is compared to the magnitude A of the element retrieved from
memory:

' Only the line-length data are modeled here. The psychophysics of the
motion and texture stimuli in Experiment 2 is beyond the scope of this
article.

(Appendices continue)
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D=M-A (14)

The size and magnitude of the discrepancy D then determines
the correction. There are five possible increments: I € {—2, —1,
0, 1, 2}. The decision rule is based on four criteria described by
two free parameters: {—3c~, —c , ¢, 3¢"}. The cutoffs are
multiplied by the category width W = 0.040 magnitude units (40
pixels). For example, an increment / = +1 is made when ¢* W <
D = 3c*W. The corrected response R is clipped at 1 or 7 if
necessary:

R =R, + I clipped between R,;, and R, (15)

An ideal observer would use ¢ = ¢~ = 0.5 (Petrov & Ander-
son, 2005). Thresholds greater than 0.5 produce conservative cor-
rection strategies consistent with the sequential and anchoring
effects in the data (Petrov & Anderson, 2005). The upward and
downward corrections need not be symmetric. In particular, when
¢t < ¢, the average response levels (ARLs) settle above the
midpoint of the response scale. This allows the models to account
for the systematic upward trend in the ARLs from Experiment 1.

Importantly, the two models differ in the mechanism that learns
the locations L, of the memory elements. ANCHOR uses the
competitive learning rule in Equation 16. The new anchor location

L&Y is a linear combination of the old location L and the target
magnitude M™ on trial 1. The learning rate « is fixed to 0.3 based
on previous research (Petrov & Anderson, 2005). Exactly one
anchor, with index i*, is updated on each trial. If there is feedback,
this is it; otherwise the system’s own response designates the
anchor for update.

LY = (1 — a) LY + a MY (16)

INST does not use competitive learning. Instead, the target
magnitude M on each trial is stored as a separate exemplar.
Because of this, INST always predicts assimilative context effects
under skewed stimulus distributions:

exp(G/T)

JjeJ

P
! Eexp(GulT)

uelU

(7

The probability P, to retrieve an instance of category J is the
sum of the individual retrieval probabilities of all members j € J of
that category (Equation 13). The sum in the denominator is over
the total memory pool U. Clearly, every member j makes a positive
contribution to P,. Categories with many members thus exert
stronger gravitational fields than do categories with few members.

Appendix B

Parameter Search

Five parameters were allowed to vary to optimize the fits in
Figure 4. The best-fitting values are reported in Table B1 . The
default values from the original ANCHOR publication (Petrov &
Anderson, 2005) are also listed for comparison. Three other con-
stants are not listed because they are not treated as free parameters
here. The perceptual noise coefficient k,, = 0.04 is constrained by
the Weber fraction (Petrov & Anderson, 2005). The activation
decay rate d = 0.5 is constrained by the ACT-R architecture

Table B1
Free Parameters of the ANCHOR and INST Models

Parameter Default ANCHOR INST
History weight H (Eq. 12) varies 0.040 0.050
Memory Noise k,, (Eq. 8) 0.070 0.083 0.050
Temperature T (Eq.13) 0.040 0.032 0.030
Correction cutoff ¢~ 0.80 0.60 0.60
Correction cutoff ¢* 0.80 0.45 0.42

Note. The Default column lists the values used to generate Figures 5 and
6. The two rightmost columns report the best-fitting values used to generate
Figure 4.

(Anderson & Lebiere, 1998). The learning rate a = .3 in Equation
16 does not apply to the INST model. To equate the number of free
parameters, it was not allowed to vary in ANCHOR either.

The two models were fitted using a combination of sequential
quadratic programming'? and grid search of the parameter space.
The objective was to minimize the root mean squared error
(RMSE) between the model ARLs and the group-level data in
Figure 3. Because the quadratic algorithm had poor convergence
with respect to parameters ¢, ¢~, and H, they were explored on
a grid. The algorithm then minimized the RMSE with respect to k,,
and 7. The best-fitting values are reported in Table B1. Note the
asymmetric correction thresholds. The minimal RMSE was 0.173
for INST and 0.154 for ANCHOR. The latter fit could have been
improved further if the learning rate o were allowed to vary
(RMSE = 0.138 for a = .40).

12 The finincon function in Matlab’s Optimization Toolbox (The Math-
Works, 2004). Transcripts of all model-fitting sessions are available at
http://alexpetrov.com/proj/anchor/

(Appendices continue)
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Appendix C

Stimulation Experiment Method

The simulations that generated Figures 5 and 6 used stimulus
sequences conforming to the design of Experiment 1. Each se-
quence consisted of 17 blocks of 28 trials each. The uniform
blocks contained 4 presentations of each stimulus. The low (pos-
itively skewed) blocks contained 7, 6, 5, ..., 1 presentations of
Stimuli 1, 2, 3, ..., 7, respectively. The high blocks were skewed
in the opposite (negative) direction. The order of presentation
within each block was randomized. There were six types of stim-
ulus sequences (or groups). Five of those (U1, L1, H1, L2, and H2)
were the same as in Experiment 1. A no-feedback-first, uniform
control (U2) was added for completeness.

The simulation was organized in batches. Each batch ran a given
model with given parameters on 250 replications of each sequence
type. Informal explorations indicated that the pattern of context
effects depended mostly on the history weight parameter H. Rea-
sonable variations of the other parameters did not introduce any
qualitatively new patterns. All simulations reported in Figures 5

and 6 were produced with default values for all parameters except
H. The defaults are from the original ANCHOR publication
(Petrov & Anderson, 2005) and are listed in the Default column in
Table B1. The specific H values are reported on the corresponding
figure panels. Each run was initialized with 7 perfectly placed
memory elements, one per response category.

The sequence of stimulus-response pairs for each run was con-
verted to an ARL profile in the same way as the data from
Experiment 1. The 250 replications in each group were then
averaged together. Each panel on Figures 5 reports the six mean
ARL profiles generated with a particular parameter setting. Fig-
ure 6 combines the profiles according to Equation 2.
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