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An experiment was performed to investigate the ability of human observers to identify configural relations among three dots.
Four stimulus categories were defined on the basis of whether or not the dots were arranged collinearly and whether or not
the central dot was equally spaced relative to the two flanking dots. Observers were initially trained with feedback to identify
these categories at a single orientation with a fixed uniform background, and then they were tested with variable orientations
and backgrounds without feedback. The results revealed almost perfect generalization. We also simulated the same task
using a recent feature hierarchy model (J. Mutch & D. G. Lowe, 2008) that is among the most successful for object
recognition. This model performed well for fixed orientations and backgrounds, but it could not accurately identify these
categories with variable orientations and backgrounds even when given training with those conditions. These findings
suggest that feature hierarchy models represent the spatial relations within an image quite differently than human
observers.
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Introduction

Human observers have a remarkable ability to perceive
and identify the manner in which objects are arranged in
space relative to one another. Figure 1 provides an
instructive example of this phenomenon for three different
objects presented against a random noise background.
Note that it is immediately apparent that these objects are
distributed in a collinear configuration and that they are
equally spaced. The perceptual identities of spatial
configurations are surprisingly robust because they remain
invariant over a wide range of structural changes. That is
to say, they can easily be identified regardless of their
sizes, orientations, or positions in space. The constituent
elements that make up such a pattern can include virtually
anything, such as line segments, small triangles, or images
of famous faces. Moreover, within broad limits, these
elements can be presented on a wide variety of back-
grounds without destroying their configural appearance.
What type of data structure is necessary to adequately

represent the global structure of a spatial configuration?
One type of representation that has become particularly
popular in vision science is to encode the structure of
images using histograms of low-level features, such as
pixel intensities or the outputs of Gabor filters at different
scales and orientations (e.g., Bergen & Adelson, 1988;

Dalal & Triggs, 2005; Motoyoshi, Nishida, Sharan, &
Adelson, 2007). However, this type of data structure is
particularly ill suited for the identification of configural
relations because it does not retain the relative spatial
positions of those features. Consider an image of three
collinear white dots against a black background. If the
positions of the black and white pixels were randomly
rearranged, the transformed pattern would no longer appear
as a collinear configuration, even though its luminance
histogram would be identical to that of the original image.
One potential strategy for overcoming this problem

might be to employ higher order templates for extracting
more complex aspects of local image structure. We know,
for example, that the primate visual cortex has a
hierarchical structure, in which neurons in the earliest
stages behave much like Gabor filters (e.g., De Valois &
De Valois, 1988; Hubel & Wiesel, 1968), whereas those
farther along the ventral stream are tuned to more
complex visual features and exhibit a greater degree of
position invariance (e.g., Desimone, Albright, Gross, &
Bruce, 1984; Tanaka, Saito, Fukada, & Moriya, 1991; see
Ungerlieder & Bell, 2011, for a recent review). Some of
the most successful models of object recognition have
been designed to mimic this type of organization and are
referred to in the literature as feature hierarchy models
(e.g., Fukushima, 1980; Perret & Oram, 1993; Wallis &
Rolls, 1997). These models can be implemented with a
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predetermined set of higher order filters (e.g., Riesenhuber
& Poggio, 1999), or they can be trained to learn a set of
features from a training set (e.g., LeCun, Haffner, &
Bottou, 1999; Mutch & Lowe, 2008; Serre, Oliva, &
Poggio, 2007). For any given input image, the responses
of these filters define a vector in a high-dimensional space,
and a standard classifier such as a support vector machine
is used to determine the most appropriate response from
the set of categories for which the model has been trained
(e.g., houses, cars, pianos, etc.). Although these models
allow for some distortions of the input, it is not at all
obvious how they could successfully cope with the wide
range of structural variations for which human observers
can identify configural categories.
The research described in the present article was

designed to achieve two goals: First, to demonstrate the
ability of human observers to identify configural catego-
ries in novel contexts and, second, to compare the
performance of human observers with that of a recent
feature hierarchy model (Mutch & Lowe, 2008) available
in the public domain. We first trained observers to identify
four possible configurations among three circular dots that
are shown in Figure 2. These categories were defined
based on two binary characteristics: (1) whether or not the
dots were arranged collinearly (e.g., Westheimer &
McKee, 1977) and (2) whether or not the central dot

was equally spaced relative to the two flanking ones (e.g.,
Klein & Levi, 1985). Human observers can make these
distinctions with very high acuity (see Morgan, 1991;
Westheimer, 1981, for reviews), which provides strong
evidence that these particular configural relations are of
fundamental importance to human perception. Observers
were initially trained with feedback to identify the four
categories in Figure 2 at a single orientation with a fixed
uniform background. They were then tested without feed-
back with variable orientations and backgrounds, and they
exhibited almost perfect generalization. When the same
task was simulated using Mutch and Lowe’s (2008) model,
it performed quite well for fixed orientations and back-
grounds. However, it could not accurately identify these
categories with variable orientations and backgrounds
even when given training with those conditions.

Experiment

Methods
Participants

Twelve students from Ohio State University, naive for
the purposes of the experiment, participated for course

Figure 1. A pattern of three objects against a random noise
background. Human observers can easily determine that these
objects are distributed in a collinear configuration and that they
are equally spaced.

Figure 2. Sample stimuli used in the behavioral experiment and
the model tests. The stimuli varied along six independent
dimensions: collinearity, bisection, context, orientation, size, and
position. The first two dimensions defined the categories (rows)
for the 4-way classification task. The context and orientation
dimensions defined 4 conditions (columns) that were used for
training (1) and subsequent generalization tests (2–4). The size
and position varied randomly within each block of trials.
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credit. Their visual acuity was assessed by a Snellen chart
and was 20/20 or better.

Stimuli and apparatus

The critical part of each stimulus was a constellation of
3 white dots (Figure 2). The stimuli varied along six
independent dimensions: collinearity, bisection, context,
orientation, size, and position. The first two defined
category membership as follows. Category A had col-
linear, evenly spaced dots. Category B had collinear,
unevenly spaced dots. The middle dot was offset either up
or down the imaginary constellation axis connecting the
centers of the flanker dots. Category C had non-collinear
(Vernier), evenly spaced dots. The middle dot was offset
either to the left or to the right of the axis. In the final
category, D, the dots were neither collinear nor evenly
spaced. The middle dot occupied one of four positions
depending on the signs of two orthogonal offsets.
The context and orientation dimensions defined four

“conditions” that were used for generalization tests. On
“context” trials, the white dots were embedded in a big
black circle on a white screen. On “no-context” trials, the
white dots appeared on a black screen. When context and
no-context trials were mixed within a block, the back-
ground luminance ramped up or down gradually during
the intertrial intervals to minimize eyestrain. The orienta-
tion of the constellation axis was either fixed or variable in
a block of trials. The training condition (“Condition 1”)
had a fixed orientation and no context. The training
orientation was counterbalanced between participants:
either 50 deg counterclockwise or 40 deg clockwise from
vertical. The behavioral data showed no significant
differences between the two groups and they were
combined in the analysis. Condition 2 introduced the
circular context at the trained orientation. Condition 3
tested the generalization with respect to orientation. It was
similar to the training condition in that there was no
context around the dots. However, the orientation varied
from trial to trial and was sampled at random from a
90-degree-wide sector whose midline was perpendicular
to the trained orientation. Finally, Condition 4 tested the
generalization with respect to both orientation and context
(Figure 2).
The last two stimulus dimensions—size and position—

were sources of task-irrelevant variability. The size of
each stimulus was defined relative to the length L of the
imaginary segment connecting the centers of the flanker
dots. It subtended L = 1.54 deg of visual angle for the
largest stimuli and 0.77 deg from the smallest ones, with
4 intermediate sizes in between. Each trial was sampled
independently and at random from the 6 possible sizes.
All distances were measured in relative units: the dot
diameter was 0.22L, the diameter of the circular context
(when present) was 2.00L, and both bisection and Vernier
offsets were 0.20L. For example, the offset at the smallest

size was (0.20)(0.77 deg) , 9 arcmin, many times greater
than the bisection and Vernier discrimination thresholds
(e.g., Klein & Levi, 1985; Westheimer & McKee, 1977).
The position of the constellation of dots varied randomly
by up to 0.60L from the center of the circular context, left
or right along the line perpendicular to the constellation
axis. The edge of the circle never clipped or touched any
dots. In addition, the stimulus as a whole was translated
randomly by up to 0.31 deg horizontally and/or vertically
relative to the fixed elements of the display.
All stimuli were generated usingMatlab (TheMathWorks,

2009) and the Psychophysics Toolbox (Brainard, 1997)
and were presented at 96 Hz on a gamma-corrected 21W
NEC AccuSync 120 color CRT. They were viewed
binocularly with the natural pupil from a chin rest fixed
93 cm away from the screen in a darkened room.

Procedure

Each participant completed 16 blocks of 32 trials each.
Each block contained 8 examples from each category in a
random sequence. The whole session lasted less than 1 h.
The participants were instructed only that the stimuli were
drawn from four different categories that remained stable
throughout the experiment and that it was possible to
achieve very high accuracy. The participants learned
through trial and error to perform a 4-way classification
task. There was feedback during the training phase
(blocks 1–6) and no feedback during the test phase
(blocks 7–16). All stimuli during the training phase were
in Condition 1—fixed orientation and no context. The test
phase assessed all 4 conditions, randomized and counter-
balanced within each test block.
Four colored squares (red, green, yellow, and blue,

arranged in a 2 � 2 mosaic, Figure 3) served as category
labels. The assignment of colors to categories was
randomized between participants but remained consistent
for each individual. Each trial began with the word
“Ready!” printed on the screen. The participant pressed
a key to trigger the stimulus presentation. There was no
time pressure—the stimulus remained visible until the end
of the trial. The participant clicked on one of the colored
squares to enter their classification response. During the
training phase, feedback was given in three modalities:
smiley faces, bonus points (visible onscreen at all times),
and beeps. If the response was correct, a smiling face
confirmed the chosen response and the bonus increased
(Figure 3A). If the response was incorrect, a frowning face
marked the chosen response and there was an unpleasant
beep. Either way, the square with the correct classification
remained in color while the other 3 squares were grayed
out. The stimulus remained visible for 2.5 s after the
mouse click, allowing the participant to associate the dot
configuration with the correct category label. The feed-
back was discontinued during the test phase: The bonus
was displayed as “XXXXX,” there were no beeps, and a
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neutral face confirmed all choices regardless of their
correctness (Figure 3B). The stimulus still remained
visible for 2.5 s after the mouse click, but all 4 squares
retained their colors at all times.

Results and discussion

The participants learned the 4-way classification
quickly and easily. All 12 participants showed the same
pattern, which is evident in the group average in Figure 4.
The mean accuracy rapidly increased during the initial
training blocks (open squares) and reached near-perfect
levels by the beginning of block 5—that is, after no more

than 32 exemplars from each category. Several individuals
reached near-perfect accuracy by the end of block 2 (i.e.,
less than 8 exemplars). This near-perfect performance was
maintained after the feedback was discontinued in block 7
(solid squares). Moreover, there was complete transfer to
untrained contexts (Condition 2, solid circles) and/or
orientations (Conditions 3 and 4, solid diamonds and
triangles). The classification accuracy remained robust
(M = 99%) across all test conditions and all participants.
These results suggest that the human visual system
represents our stimuli in a manner that makes the
relational information explicit, accessible, and indepen-
dent of orientation and context.
Could it be that our participants relied on slow,

language-mediated reasoning rather than the quick, visual
processing characteristic of object recognition? We per-
formed a follow-up experiment to evaluate this possibility.
The salient feature of this experiment was that it used
backward masking to control the time available for visual
processing (Bacon-Macé, Macé, Fabre-Thorpe, & Thorpe,
2005; Serre et al., 2007). Over the course of two sessions
on separate days, the stimulus onset asynchrony (SOA)
between the target stimulus and a pattern mask was
reduced gradually from 3000 ms down to 250 ms. The test
phase (the second half of session 2) fixed the SOA at
250 ms, discontinued the feedback, and introduced novel
orientations as in the main experiment. Eleven new
participants learned the 4-way classification task quickly

Figure 3. Schematic illustration of the experimental displays at the
end of a trial with feedback and no context (top) and with no
feedback and circular context (bottom). The smiley face (top)
indicates that the chosen response was correct. The neutral face
(bottom) confirms that a response was chosen but does not reveal
whether it is correct. The four squares were colored in red, green,
yellow, and blue.

Figure 4. Behavioral data. Mean accuracy on the 4-way classi-
fication task, averaged across the 12 participants. (Each individ-
ual showed the same pattern.) The training phase (open squares)
had feedback and presented stimuli at a fixed orientation and no
context. The test phase (solid symbols) discontinued the feedback
and introduced new orientations and contexts. Figure 2 illustrates
the stimuli in the four conditions. Error bars are 90% confidence
intervals (within subjects). All blocks were of equal size (32 trials).
Test blocks were merged in pairs for purposes of plotting.
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and easily and could perform it with near-perfect accuracy
(M = 95%) at the 250-ms SOA. The full transfer to
untrained orientations was replicated. Finally, one moti-
vated and experienced observer (the second author, NVH)
was tested at a range of fast SOAs. His accuracy was 0.97,
0.93, 0.88, 0.70, and 0.29 at SOAs of 125, 105, 85, 65, and
45 ms, respectively. His median response time at the 65-ms
SOA was 986 ms from the stimulus onset, including the
time for moving and clicking the computer mouse.
The behavioral data confirmed the phenomenological

reports of our participants, who told us that this was an
easy task to perform. As we shall see, however, the same
task poses a serious challenge to existing feature hierarchy
models.

Model tests

Our experimental task embodies one of the central
challenges in vision—the need to simultaneously satisfy
the contradictory objectives of invariance and specificity.
On the one hand, the stimulus categories are invariant
with respect to the 4 conditions in Figure 2. Thus, large
variations in size, orientation, absolute position, and
context must be ignored. On the other hand, displacing
the middle dot by only 9 arcmin can change the
classification of the stimulus. What kind of computation
can extract such small differences in relative position
from the image, while ignoring massive differences in
absolute position, orientation, and many other dimensions?
What kind of representational scheme can support such
computation?
This article examines one influential and well-articulated

proposal for meeting these objectives. Feature hierarchy
models (e.g., Fukushima, 1980; Mutch & Lowe, 2008;
Perret & Oram, 1993; Riesenhuber & Poggio, 1999; Serre
et al., 2007; Wallis & Rolls, 1997) rely on disjunctive
pooling operations to promote invariance and on con-
junctive template-building operations to maintain specif-
icity. The two types of operations alternate in a deep
hierarchical neural network. The operations are performed
in gradual, interleaved steps across multiple layers of
units, so that their effects complement each other. The
HMAX model (Riesenhuber & Poggio, 1999) illustrates
these ideas. The units in the first layer—S1—are Gabor
filters modeling the tuning properties of simple cells in
the primary visual cortex (V1, Hubel &Wiesel, 1968). The
second layer units—C1—pool the responses of the
corresponding S1 units within a small neighborhood. This
disjunctive (MAX) operation imbues the C1 units with
a measure of translation invariance, similar to that of
complex cells in V1. The third layer—S2—constructs
higher level features (e.g., corners, junctions) as
conjunctions of the simpler features (edges) in the C1

layer. They are in turn pooled across space by the C2
units in the fourth layer. Thus, receptive fields grow in
size and features become more complex as one ascends
the hierarchy. The ventral visual stream exhibits the
same gradients (Ungerlieder & Bell, 2011). Models
based on these principles achieve state-of-the-art object
recognition performance with natural images on a variety
of benchmark databases (see, e.g., Riesenhuber, 2009, for
a review).
How would feature hierarchy models perform on our

experimental task? On the one hand, there are reasons for
skepticism because, in the final analysis, the stimulus
representation at the top of the hierarchy is just a “bag of
features” (also known as feature vector, population code,
or distributed representation). No relational or configural
information is represented explicitly. Given that our
stimulus categories are defined in terms of configural
relations, it is far from clear whether such models can
handle them (cf. Fodor & Pylyshyn, 1988; Hummel &
Stankiewicz, 1996). On the other hand, the models use
redundant, overcomplete feature sets. That is, they are
designed to contain a much greater variety of conjunctive
features than are minimally necessary. Each element of
the image activates multiple features of various shapes,
whose receptive fields overlap and interlock. Thus, the
configural information could be represented implicitly.
The pieces of a jigsaw puzzle provide a useful analogy.
Even though they are scrambled in a box, it is possible to
reconstruct the global configuration because there is only
one way to fit the pieces together with no gaps or
overlaps. Analogously, the redundant, composite features
at the top of the hierarchy have been proposed to
constitute a “generic and universal dictionary I that can
support several different recognition tasks and in partic-
ular the recognition of many different object categories”
(Serre et al., 2007, p. 6428).
Given these conflicting arguments and authoritative

opinions on either side of the debate, we set out to test
the question experimentally. We performed a series of
computer simulations with a representative feature hier-
archy model (Mutch & Lowe, 2008). This particular
model was chosen for three reasons. First, it is based on
the so-called “standard model” (Riesenhuber & Poggio,
1999; Serre, Wolf, & Poggio, 2005) and is representative
of the mainstream feature hierarchy framework. Second, it
is a recent refinement that carries this framework a step
further, performs competitively on various benchmarks,
and its Matlab implementation is available under the GNU
General Public License. Third, the model restricts the
region of the visual field in which a given composite (S2)
feature is searched for. Thus, the top-level (C2) features
retain some positional information—a property that can be
useful for our task. For these reasons, Mutch and Lowe’s
(2008) model seems as well suited as any model currently
in existence to demonstrate what the feature hierarchy
framework can do on our 4-way categorization task.

Journal of Vision (2011) 11(12):11, 1–11 Petrov, Van Horn, & Todd 5



Simulation details

We used the publicly available Matlab implementation
of Mutch and Lowe’s (2008) model (see Appendix A for
details). We deliberately treated the model as a black box
and manipulated only three things: the training images,
the test images, and the model parameters. The model
uses a combination of unsupervised and supervised
learning algorithms to extract features from a set of
training images and then build a classifier on the basis of
these features (Mutch & Lowe, 2008; Serre et al., 2005).
We performed two parallel series of simulations that
differed in the training images for the initial, unsupervised
learning stage. The resulting model variants are referred to
as Model 1 and Model 2 below. They performed very
similarly.
Model 1 was trained and tested exclusively on images

generated by the same Matlab routine that generated the
stimuli for the behavioral experiment (Figure 2). The
images were rendered on a “canvas” of size 256 �
256 pixels, but the model downsized them internally to
140 � 140 pixels. If presented on the experimental
apparatus and viewed from the chin rest used by the
human observers, the side of each square image would
subtend 5.54 deg of visual angle. Recall that the smallest
offset that could affect the classification of the experimen-
tal stimuli was 9 arcmin, which corresponded to approx-
imately 3.8 pixels in the model. Thus, the input images had
sufficient resolution for the classification task.
On a given run, the model was trained on images drawn

from one designated experimental condition. Each training
set contained 60 samples from each category, 240 images
total. (Larger training sets led to negligible improvements
in accuracy, whereas the computational cost rose steeply1

and became prohibitive even on a computer cluster.)
Then, the trained model was tested on all conditions. The
test set contained 3200 new images (200 exemplars �
4 categories � 4 conditions). As the training protocol
involved random sampling, the accuracy varied across
runs. We ran batches of 10 runs to estimate the mean
and variance of the model performance. One complete
simulation included 1 such batch for each training
condition—a total of 40 training runs and 160 tests.
We searched the parameter space to optimize the model

performance (see Appendix A and Van Horn, 2011 for
details). Briefly, very little tuning was required. With one
exception, the default parameter values (Mutch & Lowe,
2008; Serre & Riesenhuber, 2004) worked well for our
stimuli. The exception was the parameter that controlled
the receptive field size of the Gabor filters on the first (S1)
layer. Its default value (11 � 11 pixels) produced
suboptimal training accuracy and suboptimal general-
ization to novel orientations. We used receptive fields of
27 � 27 pixels in all simulations.
The training images for Model 1 contained nothing but

dots and circles. Admittedly, this is a very impoverished
visual environment that does not match the rich perceptual

experience of human observers. To alleviate this problem,
we repeated the simulation with a model that was
pretrained on natural images from the Caltech 101
database (Fei-Fei, Fergus, & Perona, 2004). This database
is widely used in computer vision research and contains
examples of 100 categories such as airplanes, bicycles,
flowers, and butterflies. Model 2 sampled 3060 Caltech
images during its unsupervised learning phase. It extracted a
reusable dictionary of 4075 fuzzy C1 templates similar to
that used by Mutch and Lowe (2008) and Serre et al.
(2007). The pretrained Model 2 was then given 240 images
generated by our Matlab routine for a designated
experimental condition. The supervised learning phase
then proceeded as in Model 1. Both models trained an all-
pairs support vector machine (Schölkoph & Smola, 2002)
that classified the images into 4 categories on the basis of
the Caltech-derived features. Finally, the classification
accuracy of the fully trained Model 2 was tested on all
4 experimental conditions as described above. Again, we
replicated everything in batches of 10—another 40 training
runs and 160 tests.

Simulation results and discussion

Table 1 reports the mean classification accuracy of
Model 1. Each row represents a batch of runs trained on the
same condition. The first row corresponds to the behav-
ioral experiment—training in Condition 1 with feedback
followed by testing on all conditions without feedback.
The data from the first row are plotted in Figure 5A with
solid circles. The open circles plot the analogous results
for Model 2. The near-perfect human generalization
results are also reproduced for comparison.
First of all, both models were able to learn the 4-way

classification task in Condition 1. All stimuli in this
condition had the same fixed axis and no context, but the
dots varied in size and position. Recall also that the test
set was generated independently from the training set. The
models thus demonstrated successful transfer to novel

Training condition Test condition

Context Orientation 1 2 3 4

1 None Fixed 95 T 1 42 T 7 32 T 6 25 T 7
2 Circle Fixed 59 T 6 75 T 2 28 T 4 30 T 4
3 None Variable 56 T 4 25 T 11 59 T 2 25 T 11
4 Circle Variable 33 T 8 38 T 3 33 T 7 38 T 2

Table 1. Classification accuracy of Model 1 (mean T 90%
confidence intervals estimated from batches of 10 independent
runs). On each run, the model was trained with stimuli from one
designated condition (row) and then tested on all 4 conditions
(columns). The data from the first row are plotted in Figure 5A, and
the data along the diagonal are plotted in Figure 5B.
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images drawn from the same distribution, as well as
across a range of sizes and positions. This result also
confirmed that the model performance was not limited by
the resolution of the input images.
However, the accuracy collapsed to near-chance levels

on all tests that involved novel contexts and/or orienta-
tions (Figure 5A, Conditions 2–4). This contrasted sharply
with the effortless generalization of human observers. It
seems that the representations used by the model do not
encode configural relations in the same flexible format
that humans do. Yes, it is possible to encode relational
information implicitly in a redundant vector of over-
lapping composite features. Enough relational information
can be preserved in this way to classify the stimuli in
Condition 1. However—and this is very important—this
representation is brittle and easily disrupted by irrelevant
background elements such as the circular contexts in
Condition 2. It also fails to generalize to novel orientations.
Could the model learn the 4-way classification task in

Conditions 2–4 with the aid of explicit training in these
conditions? In other words, granted that it could not
transfer as the humans did, perhaps the model could at
least scale up. The relevant data are reported along the
diagonal of Table 1 and plotted in Figure 5B. Model 2
(open circles) replicated the pattern. Each data point
summarizes a separate batch of runs, trained in a given
condition, and then tested with novel exemplars drawn from
the same condition. A clear overall trend emerged—the
accuracy deteriorated rapidly as the stimulus set became
more diverse. For fixed-axis constellations of dots on a
black background (Condition 1), the accuracy was near
ceiling, but it dropped to 75% when a surrounding circle

was added to the stimuli (Condition 2). Random rotations
of the constellation axis within a 90-degree sector
(Condition 3, black background) eroded the performance
even more. Finally, when all sources of variability were
present simultaneously (Condition 4), the accuracy col-
lapsed to 38%, barely above chance. So, in the end, the
model could not scale up.
The interpretation of these results is straightforward.

The model’s classification strategy is conceptually similar
(though not identical) to table lookup. Essentially, the
model accumulates a catalog2 of image fragments and
their respective category labels. This is sufficient to get the
job done at first, as long as the diversity of the stimulus
environment does not exceed the representational capacity
of the system. The redundant, overlapping feature vectors
preserve enough configural information to differentiate
equal from unequal spacing and collinear from non-
collinear constellations of dots along a fixed axis.
Furthermore, the disjunctive pooling across space builds
enough positional invariance to cope with the irrelevant
variability in Condition 1. Thus, to its credit, the model
successfully learned this condition. The object recognition
benchmarks (e.g., Caltech 101) are analogous to Con-
dition 1, except that they contain hundreds of categories
rather than just 4. Our results are, therefore, consistent
with the good performance of feature hierarchy models on
such benchmark tests (e.g., Mutch & Lowe, 2008; Serre
et al., 2007). However, the fuzzy templates are not
orientation invariant and are affected by the irrelevant
circular contours introduced by our context manipulation.
This prevents generalization to novel orientations and
contexts (Figure 5A).

Figure 5. Simulation results. Mean accuracy on the 4-way classification task for two model variants: Model 1 was trained exclusively on
the experimental stimuli, whereas Model 2 was pretrained on natural images. Panel (A) mimics the procedure of the behavioral
experiment—the models were trained in Condition 1 only and then tested on all 4 conditions. The human generalization data are
reproduced from Figure 4 for comparison. In panel (B), each point represents a separate model, trained in its respective condition and
then tested in the same condition. Error bars are 90% confidence intervals estimated from batches of 10 independent runs.
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Explicit training in Conditions 2 and 3 (Figure 5B)
improves performance because it provides labeled exem-
plars in larger swaths of the stimulus space. However, the
model fights an uphill battle that, in the end, it cannot win.
As more and more irrelevant variability is introduced, the
category boundaries become increasingly convoluted and
tangled (DiCarlo & Cox, 2007) and it becomes increas-
ingly difficult and inefficient to represent them as
weighted feature combinations. Several mechanisms in
the model are designed to cope with this problem:
disjunctive pooling for positional invariance, coarse
coding for greater representational capacity (cf. Cer &
O’Reilly, 2006), and a support vector machine for flexible
classification. These mechanisms, however, simply delay
the inevitable. In the end, the model succumbs to the
combinatorial explosion.

General discussion

The research described in the present article provides
compelling evidence that configural categories based on
collinearity and equal spacing can easily be identified over
a wide range of conditions. Observers were initially
trained with feedback to identify these categories at a
single orientation with a fixed uniform background. When
they were then tested with variable orientations and
backgrounds without feedback, the results revealed almost
perfect generalization. We also simulated the same task
using Mutch and Lowe’s (2008) feature hierarchy model.
Although it performed very well for fixed orientations and
backgrounds, it could not accurately identify these
categories with variable orientations and backgrounds
even when given training with those conditions.
These results suggest that the model uses a classification

strategy that is fundamentally different and inferior to the
strategy used by humans. The behavioral data and the
phenomenological reports of our participants indicate that
they employed an abstract classification rule expressed in
terms of collinearity and equal spacing. These configural
relations apparently are represented explicitly by the
human visual system. This allowed the observers to
induce the correct rule from just a few training examples
and then generalize fluently to arbitrary contexts, orienta-
tions, sizes, and positions. By contrast, Mutch and Lowe’s
(2008) model can represent relations only implicitly as
jigsaw puzzles of overlapping features. Although suffi-
cient for certain constrained environments, this neither
transfers nor scales up to more complex environments.
The generalization failure is an inevitable consequence of
the model’s inability to represent relations independently
of the other properties of the image (Hummel, 2003). The
configural information in feature hierarchy models is
inextricably mixed with irrelevant attributes such as
orientation and nearby contours.

A similar pattern of results has been reported by
Hayworth, Yue, and Biederman (2007). They created line
drawings of objects with deleted contours in complemen-
tary pairs that had no contours in common. In a match-to-
sample task, observers had no difficulty recognizing that
these complementary images depicted the same object,
but they could not accurately match a given image with a
transformed version with randomly repositioned contours.
They also simulated this same task using another feature
hierarchy model by Serre et al. (2007, 2005). The results
were the opposite of those obtained for humans—that is,
the model was unable to match complementary images of
the same object that had no contours in common, but it
was able to accurately match scrambled and intact images
of an object. Although Mutch and Lowe’s (2008) model
would have similar difficulties with complementary
images, it is likely that it would be more impaired by
image scrambling than the model developed by Serre et al.
(2005). The reason for this is that Serre et al.’s model
discards all position information at the highest level of the
hierarchy, whereas Mutch and Lowe’s model does not.
Thus, it is able to provide a coarse representation of the
relative positions of higher order features.
Recent feature hierarchy models have been designed

explicitly to account for the tuning and invariance proper-
ties of neurons in the anterior inferotemporal cortex (e.g.,
Logothetis, Pauls, & Poggio, 1995), which are believed to
be involved in object recognition, but the behavioral data
suggest that these models cannot account for the encoding
of configural relations. One possible reason for this is that
configural relations are processed somewhere else, and
there is some evidence from fMRI to support this
hypothesis. For example, imaging studies of Vernier and
bisection tasks have revealed that these particular relations
produce significant activations in the dorsal stream along
the intraparietal sulcus (Fink, Marshall, Weiss, & Zilles,
2001; Sheth et al., 2007). Other studies (e.g., Hayworth &
Biederman, 2006; Hayworth, Lescroart, & Biederman,
2011) suggest that the lateral occipital complex may also
be involved in the encoding of spatial relationships.
Several models of Vernier and bisection performance

have been proposed in the literature (e.g., Klein & Levi,
1985; Wilson, 1986), but they would be of little use for
the task in the present experiment. These models operate
by comparing the overall pattern of responses for aligned
and unaligned targets within a bank of filters with varying
orientations and scales, and they are able to predict
observers’ thresholds over a wide variety of conditions.
However, different patterns of filter responses are also
obtained by the addition of irrelevant background con-
tours (Morgan & Ward, 1985), changing the aligned
elements from dots to lines, or altering their spacing. In
order to recognize collinearity or equal spacing as general
categories, it would be necessary to distinguish all of the
possible patterns of filter responses that can be produced
by these categories from all the patterns that cannot. This
requirement is especially difficult because the number of
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different stimulus configurations contained within these
categories is extraordinarily large (e.g., Figure 1), and
observers can identify them with a high degree of precision.
Pomerantz and Portillo (2011) have argued that some

types of configural relations are special in the sense that
they form emergent features that are more discriminable
than their component parts. They used an odd-man-out
paradigm with patterns composed of one to four dots.
Their results revealed that response times were fastest
when discriminating patterns that differed with respect to
collinearity or symmetry. Response times were much
slower, in contrast, when comparing patterns that did not
differ with respect to these attributes.
Chen (1983, 2005) has proposed an interesting theoret-

ical hypothesis that the relative perceptual salience of
emergent features may be systematically related to their
structural stability under change, in a manner that is
similar to Klein’s hierarchy of geometries (see also Todd,
Chen, & Norman, 1998). According to this hypothesis,
observers should be most sensitive to those aspects of an
object’s structure that remain invariant over the largest
number of possible transformations, such that changes in
topological structure (e.g., the pattern of connectivity)
should be more salient than changes in projective structure
(e.g., straight versus curved), which in turn should be
more salient than changes in affine structure (e.g., parallel
versus non-parallel). The most unstable properties of all
are purely metric changes in length, orientation, or
curvature. It is likely that the mechanisms for detecting
the most stable emergent features have evolved over eons
because they are so important for object recognition. For
example, Chen, Zhang, and Srinivasan (2003) have shown
that honeybees can learn the abstract concept of topo-
logical invariance in visual forms but cannot distinguish
between a square and a circle.
There are many other types of emergent features that

are important in natural vision. These include parallelism,
symmetry, and various types of vertex structures, such as
arrows, Ys, and Ts. It is interesting to note that these are
the constituent elements used by Biederman (1987) for
defining geons in his theory of recognition by compo-
nents, but he has said very little about how they are
detected in actual images. For example, in the neural
implementations of this theory (Hummel, 2001; Hummel
& Biederman, 1992; Hummel & Stankiewicz, 1996), they
are hand-coded. Discovering the neural mechanisms for
identifying these elementary configural relations in natural
vision remains as a fundamental problem for future research.

Appendix A

Parameter search

All simulations with Mutch and Lowe’s (2008) model
used the FHLib Multiscale Feature Hierarchy Library

(version v8, downloaded from http://www.mit.edu/
~jmutch/fhlib/). We deliberately treated the model as a
black box and manipulated only the input images and the
parameters. No algorithms or equations were modified.
We did not activate the sliding window mechanism used
in Mutch and Lowe’s localization experiments because
our stimuli were relatively small. This mechanism was not
activated in Mutch and Lowe’s multiclass experiments
(Caltech 101) either.
Given that the main goal of our simulations was to

evaluate the best performance that the model can achieve
with our stimuli, it was important to use appropriate
parameter values. We imposed the constraint that a given
simulation should utilize the same parameters in all
experimental conditions. Without this constraint, it would
have been very difficult to compare the results across
conditions. A thorough search of the parameter space was
not feasible because the simulations were time consuming.
Consequently, we (Van Horn, 2011) explored one param-
eter at a time.
First, we doubled the number of features from 4075 to

8150. As this changed the accuracy by less than 1%, we
adopted the original number of features (4075) for all
subsequent simulations. This number is commonly used in
the literature (Mutch & Lowe, 2008; Serre et al., 2005).
Next, we evaluated a range of values for the receptive
field size (“xySize”) of the S1 layer. The accuracy
increased as the RF sizes increased and then leveled off.
For example, the default size (11 pixels) yielded 50%
accuracy in one representative condition, whereas sizes
greater than 21 yielded 75%. We chose a value (27) in the
middle of the plateau and used it for all subsequent
simulations. This was the only parameter that was
changed in the end. We explored three other parameters
in a similar manner, in order: within-layer inhibition
(“inhibit,” default = 0.5), XY tolerance of the C2 layer
(“xyTol,” default = 0.05), and scale tolerance of the C2
layer (“scaleTol,” default = 1). Their default values could
not be improved upon, and so we adopted them for our
simulations as well. All in all, Mutch and Lowe (2008)
seem to have accomplished their goal “to find parameters
that could be used for any data set” (p. 51). Very little
tuning was required to apply their model to our stimuli.
On one of the early simulations, we also explored how

accuracy scaled up with the number of images in the
training set. Our longest runs trained with 300 images per
category, 1200 in total. The accuracy did improve with
training, as expected, but the slope of the learning curve
was extremely shallow—on the order of 1 percentage point
per 50 exemplars per category.
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Footnotes

1The model uses an SVM classifier. The time to train a
support vector machine scales as the third power of the
number of training examples in the worst case (Bottou &
Lin, 2007).

2Technically, the SVM classifier identifies and lever-
ages the “support vectors” near the decision boundary and
disregards the exemplars in the interior. For this and other
reasons, the model’s classification strategy is not identical
to table lookup. These technical details do not invalidate
the conceptual argument in the text.
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