Supplementary material for “Dissociable perceptual learning mechanisms
revealed by diffusion model analysis” by Petrov, Van Horn, & Ratcliff, to be
published in Psychonomic Bulletin & Review, February 2011.

ADDITIONAL DETAILS ON THE MODEL FITS

As stated in the main text, the diffusion model (DM) was fitted individually for
each observer and each block. There were 297 fits (= 27 observers x 11 blocks,
including the “mini-block” after the motion-aftereffect session). The parameter-
search algorithm minimized the y? discrepancy between predicted and observed
quantile RTs (Ratcliff & Tuerlinckx, 2002). The distribution of the 297 individual y?
values had a mean of 23.6 (median=20.2, standard deviation=17.5, upper
quartile=27.9, max=147). More than 69% of the values were less than the critical
x%=25.0 (df=15, p<.05). That is, the model did not deviate significantly from the data
in two thirds of the cases. The deviations in the remaining cases, though statistically
significant, were small and unsystematic as evident from Figures 4 and 5. The
deviating cases were spread approximately uniformly across blocks and participants.
It should also be noted that for sample sizes such as ours, “y? often indicates
significant deviations from a model, when in fact, none exist” (Van Zandt, 2000, p.
452). In conclusion, the diffusion model seems to track our data to a sufficiently good
approximation so that the model parameters are valid measures of the underlying

cognitive processes.

Figure S1 plots the learning curves for two DM parameters: across-trial
standard deviation 7 in the mean drift rates (top panel) and the across-trial
variability s, in starting point (bottom panel). The upward linear trend in n was
statistically significant but the effect size was small (Table 1: F(1,182)=6.0, p<.02,

nf} =.08). This increase in 1 probably stems from the large increase in the mean drift

rates themselves (see Figure 3C in the main text).
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Figure S1. Learning profiles for two diffusion-model parameters:

across-trial variability in drift rate (A) and in starting point (B).

The data format is as in Figure 3 in the main text. The observers

practiced motion-direction discrimination for 8 blocks (black

symbols) and then were tested on the same task at the orthogonal

direction (open symbols). The error bars are 90% within-subject

confidence intervals. Shaded areas mark two additional sessions of

motion-aftereffect measurements.
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There were no significant learning trends for the starting-point variability s,
(F(1,182)=0.37 for the linear and 0.20 for the quadratic contrasts, respectively). This
is consistent with the synchronization hypothesis and suggests that the diffusion
process was rarely gated too early even during the very early blocks. In other words,
the large variability in nondecision times s: in Figure 3F apparently reflects instances
in which the diffusion process started too late rather than too early. When the
diffusion process starts too late, we expect a decrease in drift rates because useful
sensory evidence is missed. By contrast, when the diffusion process starts too early,
we expect an increase in starting-point variability because noise is accumulated in
the absence of evidence. In other words, the synchronization hypothesis includes
two distinct scenarios. In the first scenario, the initial blocks contain many trials on
which the diffusion process starts too late. As these long nondecision times are
shortened with practice, the drift rates improve, the nondecision variability s;
decreases, and the starting-point variability s, stays the same. The available data
seem to show this pattern. In the second scenario, the initial blocks contain many
trials on which the diffusion process starts too early. If such short nondecision times
were prolonged with practice, s, would have increased. The apparent lack of such

increase makes the second scenario unlikely.

MOTION AFTEREFFECT

The experiment contained two additional sessions that measured the motion
aftereffect (MAE; Mather, Verstraten, & Anstis, 1998) in the trained, test, and two
control directions. The MAE data address a research question that is independent of
our current focus and will be published separately. The presence of these MAE
sessions does not affect the interpretation of the discrimination data reported in the
main text. This appendix outlines the MAE procedure and explains why the two data

sets can be treated separately.
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MAE Procedure

The MAE sessions occurred on two separate days marked by the shaded areas
in Figure 3. There were 81 trials per session. Each trial began with a beep and
consisted of three phases: adaptation, MAE measurement, and reset. The adaptation
duration was 10 s, the MAE duration was the dependent variable, and the reset
duration was adjusted to make the trial total exactly 30 s. The adapting stimuli were
the same as in the discrimination sessions, except that they moved for 10 s rather
than 397 ms. Then a (freshly generated) static! texture filled the aperture. It
appeared to move due to the aftereffect. The participants were asked to press a key
when the apparent motion stopped. The reset phase presented random dynamic
noise within the aperture for the remainder of the trial. It minimized any residual
carry-over to the next trial (von Griinau, 2002). A red fixation dot was visible in the
aperture center at all times. A simple attentional task controlled for fixation during
the adaptation phase. The direction of motion changed by +3° at random intervals
and the participants pressed a key whenever they detected a change. Several such
changes occurred on a trial, and bonus points (visible onscreen) were scored for

detecting them.

Discussion

It is extremely unlikely that the motion-aftereffect task can affect the
interpretation of the discrimination data because the two tasks are very different.
Moreover, our main finding - dissociable learning mechanisms - hinges on the
concept of stimulus specificity, which in turn is defined with respect to two
directions: training and test. All MAE blocks contained a counterbalanced,
randomized mixture of both.2 The MAE protocol was not contingent on what
direction had been practiced during the discrimination sessions. Furthermore, the
MAE data showed no statistically significant effects of the direction of the adapting

stimulus.

The last experimental session began with a “mini-block” in the trained

direction. It is shown in Figure 3 in the main text as an isolated point with the same
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symbol as the points on the main learning curve (blocks 1-8). The purpose of this
mini-block was to absorb the disruptive influence of the MAE posttest and transition
back to the discrimination task. The small drop in all performance measures in
Figure 3 is typical of the switch cost that occurs in perceptual discrimination upon
any change of the experimental situation (e.g., Petrov, Dosher, & Lu, 2005). In this
case, the switch cost reflects the task transition. Critically, the motion-direction
switch in block 9 causes a further drop (particularly in the drift rates in Fig. 3C). This
further drop cannot be attributed to the MAE.

References

Petrov, A. A, Dosher, B. A., & Lu, Z.-L. (2005). The dynamics of perceptual learning:
An incremental reweighting model. Psychological Review, 112 (4), 715-743.

Ratcliff, R., & Tuerlinckx, F. (2002). Estimating parameters of the diffusion model:
Approaches to dealing with contaminant reaction times and parameter
variability. Psychonomic Bulletin & Review, 9 (3), 438-481.

Verstraten, F. A.].,, van der Smagt, M. ]., Fredericksen, R. E., & van de Grind, W. A.
(1999). Integration after adaptation to transparent motion: Static and
dynamic test patterns result in different aftereffect directions. Vision
Research, 39, 803-810.

Van Zandt, T. (2000). How to fit a response time distribution. Psychonomic Bulletin &
Review, 7 (3), 424-465.

von Griinau, M. W. (2002). Bivectorial transparent stimuli simultaneously adapt
mechanisms at different levels of the motion pathway. Vision Research, 42,

577-587.

Endnotes

1 This measured the static MAE (Verstraten et al., 1999). For 11 of the 27
observers, the test stimulus on half the trials was dynamic noise that measured the
dynamic MAE.

2 For 16 observers, the MAE was also measured in the two opposite

directions.
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