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CHAPTER I 

INTRODUCTION 

1.1. Motivation 

The key intuition underlying the research presented in this dissertation is that 
the mechanisms giving rise to human analogy-making are central to cognition. 
Analogy is not just a specific technique for problem solving and argumentation 
occasionally called upon when the more reliable methods such as deduction and 
proof do not work. As we view it, analogy is a manifestation of the fundamental 
cognitive ability to relate new information to old knowledge and to flexibly 
manipulate both until they fit into a harmonious whole. As such, it highlights a 
number of issues that are absolutely central to cognition in general —  
organization of memory, manipulation of complex structured representations, 
dynamic relevance, flexible allocation of resources, perception and categor-
ization, generalization, learning, etc. Research on analogy, therefore, transcends 
the boundaries of the specific phenomenon and goes deeply into the core of 
intelligence. 

The main instrument for the research presented in this thesis in the 
methodology of cognitive modeling. The aim is to analyze analogy-making in 
computational terms and to construct a working artifact in the form of a computer 
program. The behavior of the model is then compared to empirical data 
collected by psychological experimentation. The criterion for success is whether 
the model contributes to our theoretical understanding of the hidden mechanisms 
of human cognition. 

This thesis describes a computational cognitive model called AMBR 
(Associative Memory-Based Reasoning). It provides a detailed account of its 
mechanisms and demonstrates its operation by reporting the results of 
numerous simulation experiments performed with a computer implementation of 
the model. Throughout the thesis, an attempt has been made to formulate the 
implications of AMBR for our understanding of human cognition as well as to 
compare it to other models presented in the literature. 

The research reported here is part of a larger research project launched by 
Boicho Kokinov approximately ten years ago (Kokinov, 1988, 1990, 1994a; 
Kokinov, Nikolov, & Petrov, 1996; Kokinov & Hadjiilieva, 1997; Kokinov, 1998). 
The long-term goal of the project is to give a unified account of deductive, 
inductive, and analogical reasoning by realizing them with the same set of mech-
anisms. 
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As analogy is in a sense representative of cognition in general, a model of 
analogy-making should be based on a full-fledged cognitive architecture. We do 
not expect that a small ‘analogy machine’ based on a few simple assumptions 
could explain such complex phenomenon. Neither do we expect that this could 
be done by some all-encompassing ‘magic formula’. Instead, we conceptualize 
analogy as an emergent product of the collective effort of many interdependent 
mechanisms. The claim is that these same mechanisms can be used for other 
cognitive tasks too. As a consequence, modeling analogy-making requires a 
solution to a number of issues about knowledge representation, organization of 
memory, allocation of computational resources, perception, etc. 

AMBR is based on a cognitive archi tecture that is a first step towards this 
very distant goal. The archi tecture DUAL (Kokinov, 1994a,b,c) provides a frame-
work for building dynamic emergent computational models of cognitive 
phenomena. AMBR is one such model. 

1.2. Main Ideas of DUAL and AMBR  

1.2.1. Overview of DUAL  

DUAL is a general-purpose cognitive architecture that comprises a unified 
description of mental representation, memory structures, and processing mech-
anisms. All these aspects of the architecture are organized around the principles 
of hybridity, emergent computation, dynamics, and context sensitivity. 

DUAL is hybrid — it consists of complementary aspects. Moreover, it is 
hybrid in two ways. On one hand, it hinges upon the symbolic/connectionist 
distinction and the integration between the two. On the other, there is the 
declarative/procedural distinction and integration thereof. DUAL is also 
emergent, dynamic, and context-sensitive. All processing and knowledge 
representation in the archi tecture is carried out by a cohort of small entities 
called DUAL agents. There is no central executive that controls the whole system, 
allocates resources, resolves conflicts, etc. Instead, there are small-scale DUAL 
agents and local interactions between them.  The global behavior of the sys tem 
emerges from the self-organizing pattern of these interactions. An important 
feature of DUAL’s operation is that it is constantly changing in response to 
influences from the environment. This is possible due to the emergent nature of 
the processing and the lack of rigid centrally imposed algorithm. 

In a little more detail, each DUAL agent is a hybrid entity serving both repre-
sentational and processing purposes. Each agent is relatively simple and has 
access only to local information, interacting with a few neighboring agents. It has 
a micro-frame storing declarative and procedural knowledge. Its symbolic 
processor can perform simple manipulation on symbols (discrete compositional 
entities) and to pass them to other agents. The complementary aspect of the 
processor is engaged in spreading activation (continuous additive quantity) 
between agents. Thus they can also be conceptualized as nodes in a network. 
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The speed of the symbolic processing performed by a given DUAL agent 
depends on its activation level. Active agents work rapidly, less active agents 
work slowly, and inactive agents do not work at all. In this way, each agent con-
tributes to the overall computation in the system to a different extent. As activa-
tion levels change continuously, the speed of the symbolic processing changes 
accordingly. This is a key factor for the dynamic emergent computation which is 
characteristic of DUAL. 

The long-term memory of the archi tecture consists of the total population of 
all permanent DUAL agents. The active subset of them plus some temporary 
agents constitute the working memory of the system. The contents of the working 
memory changes dynamically, reflecting changes in the environment and the 
internal course of computation. This is another factor for flexibility and context-
sensibility. 

1.2.2. Main Ideas of AMBR 

AMBR is a dynamic emergent model built on the basis of DUAL. In its general 
form it is conceived as an integrated model of deductive, inductive, and 
analogical reasoning (Kokinov, 1988). All three kinds of reasoning are viewed as 
slightly different versions of a single uniform reasoning process. The overall 
approach is that reasoning establishes correspondences between two 
problems, schemes, situations, etc. and transfers some elements from one to the 
other, with due modification. The model explains deduction, induction, and 
analogy in terms of the relationships between the two descriptions that happen to 
be put in correspondence in each particular case. In this way, analogy can be 
viewed as the most general one, with deduction and generalization at the two 
extremities — where the source and the target are related in a special way, one 
of them being a specific instance of the other. 

The research reported in this thesis concentrates on analogy-making. 
Therefore, AMBR is presented and discussed here as a model of analogy-
making regardless of the fact that some of the considerations may have broader 
scope. 

The models of analogy-making typically decompose it into separate ‘stages’ 
or ‘phases’. For example, one possible decomposition includes: (i) representa-
tion of the target problem, (ii) retrieval of a source analog from memory, (iii) 
mapping the two descriptions, (iv) transfer from the source to the target, (v) 
evaluation of the analogical inferences, and (vi) learning and generalization. 
Some researchers (e.g. Gentner, 1989) argue that the stages of analogy-making 
are relatively independent and thus are susceptible to piecemeal exploration. 
Others (e.g. Chalmers, French, & Hofstadter, 1992) oppose this view claiming 
that the process of analogy-making is inseparable in principle due to the high 
degree of interdependence among its components. 

AMBR agrees with the second position. In this model the components of 
analogy-making are conceptualized as subprocesses that overlap in time and 
influence each other. The long-term goal of the AMBR project is to develop an 
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integrated model of all these subprocesses on the uni form foundation of DUAL. 
At the time being, however, only two of them are implemented in detail. The 
version of AMBR that is reported in this thesis is an integrated model of 
analogical access and mapping. These two subprocesses and the computa-
tional mechanisms that implement them in the model are discussed in detail. 
Special emphasis is put on the ways that they can interact and on the dynamic 
emergent nature of the computations. 

Another feature of AMBR that is central to this thesis is that the model uses 
decentralized representations of situations1. Each DUAL agent is relatively 
simple and cannot represent much. Therefore, a whole coalition of agents is 
needed for the representation of each episode, schema, or even proposition. 
AMBR coalitions are emergent and have fuzzy boundaries. The members of a 
given coali tion can come in or out of it dynamically and to participate in it with 
varying intensity. There is no centralized data structure enumerating all agents 
belonging to a coali tion. This allows for greater flexibility and integration of the 
various subprocesses of analogy-making. In particular, the mapping process can 
begin before the whole coalition is accessed from memory. The correspon-
dences established by the active elements of a situation can then influence the 
activation of their coali tion partners. As a consequence, the episodes that better 
map to the target tend to be preferentially accessed. This organization has a 
number of advantages which are discussed in the thesis. 

The current version of the model relies on six computational mechanisms to 
carry out the tasks within its scope. These are: (i) spreading activation, (ii) 
marker passing, (iii) constraint satisfaction, (iv) structure correspondence, (v) 
rating, and (vi) skolemization. Each of them serves a concrete function in the 
model. Thus, spreading activation defines the working memory of the system, 
provides dynamic estimates of the relevance of each item, serves as a power 
supply for the symbolic processing, and underlies the relaxation of the network 
constructed by the constraint satisfaction mechanism. The marker passing is 
used for assessing semantic similarity, inheritance of properties, and carries out 
various information needed by other mechanisms. It also provides justifications 
for some of the hypotheses used by the constraint satisfaction mechanism. The 
latter underlies the process of mapping two struc tured descriptions and is a 
major instrument for achieving global consistency of the local activities in the 
model. The structure correspondence mechanism provides additional justifica-
tions for new hypotheses and dynamically modifies the topology of the constraint 
satisfaction network. The rating mechanism is responsible for promoting winner 
correspondences and for elimination of losers. Finally, skolemization uses 
general semantic knowledge to augment the description of a situation upon 
necessity. 

                                                 
1  This term should not be confused with the distributed representations  in neural networks. 
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1.3. The AMBR Family 

As a matter of fact, AMBR is not the name of a single model but a generic 
name of a whole succession of models. Each of them builds upon the previous 
one and takes a few steps further in the long-term project. The major milestones 
along this road are the following: 

Kokinov (1988) puts forth the conjecture that deduction, induction, and 
analogy can be conceptualized as different manifestations of a uniform 
reasoning process and gives it the name Associative Memory-Based 
Reasoning. An associative mechanism using spreading activation is proposed 
for the purposes of memory retrieval and estimation of relevance. The know-
ledge representation scheme is detailed in (Kokinov, 1989). 

Kokinov (1994a) presents a much more elaborated version of AMBR. It will 
be denoted AMBR1 when reference to the particular version is important. The 
constraint satisfaction mechanism is adopted for the purposes of the mapping 
process. The constraint satisfaction network (CSN) is constructed dynamically by 
the joint operation of the marker passing and structure correspondence mechan-
isms. The CSN is integrated with the main network of the model, which allows for 
interactions between the different subprocesses in analogy-making. AMBR1 uses 
centralized representation of situations — there is a frame containing a slot for 
each situation element.  

Kokinov (1994a,b,c) also pulls out the architecture DUAL as something differ-
ent from the specific model AMBR. The main archi tectural principles of DUAL are 
established: multi-agent approach, lack of central executive, hybridization at the 
micro-level, dynamic emergent computation, context sensitivity, etc. There is a 
computer implementation of the architecture and the model. It is used for 
simulation experiments.  

In a M.Sc. thesis supervised by Boicho Kokinov, Petrov (1997) develops a 
detailed specification of DUAL and resolves some ambiguities of the original 
proposal. An exact and general mechanism for determining symbolic pro -
cessor’s speed on the basis of the activation level is specified. The connection-
ist aspect is identified as an energy supplier for the symbolic one. The notion of 
coalitions and the meso-level of description are explicated. A new portable 
implementation of the architecture is developed in Common Lisp with CLOS. 

There are improvements of AMBR too. This version of the model (Petrov, 
1997) will be denoted AMBR2. It introduces decentralized representations of 
episodes and designs the machinery for maintaining them. In particular, there 
are secretaries that register the hypotheses for each element and assist the 
construction of the constraint satisfaction network. The activation function of 
AMBR1 is changed with a better one. The model is fully implemented using the 
new implementation of DUAL. The knowledge base is expanded considerably 
and more extensive simulation experiments are performed. 
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The goals of the research reported in this thesis are to extend the model 
further. The new version will be denoted AMBR3. The process of mapping is to be 
completed until winner correspondences are identified, thus setting the stage for 
the transfer process. New mechanisms for using semantic knowledge for  
augmenting  the description of episodes are to be designed and added to the 
model. The existing mechanisms and  the computer implementation are to be 
improved and extended. The knowledge base is to be enlarged considerably, 
both by elaborating the existing descriptions and by adding new concepts and 
episodes. This larger knowledge base is to be used for new simulation 
experiments. 

1.4. Outline of the Thesis 

The structure and contents of this dissertation are summarized as follows: 
Chapter II — Background — reviews some empirical data about analogy-

making reported in the literature. It also presents briefly a selection of models 
and discusses their strengths and weaknesses. 

Chapter III — AMBR in Broad Strokes — presents a concise and relatively 
self-contained description of the cognitive archi tecture DUAL and the model 
AMBR(3). 

Chapter IV — Knowledge Representation — describes the knowledge rep-
resentation scheme in detail. It contrasts the advantages and disadvantages of 
centralized and decentralized representation of situations. It also introduces the 
domain used for the simulation experiments. 

Chapter V — AMBR Mechanisms at Work — provides a rigorous and 
systematic description of current AMBR mechanisms. The operation of the model 
is illustrated on a concrete example by showing how the mechanisms apply to a 
particular target problem. The chapter contains diagrams and transcripts from 
actual program runs. 

Chapter VI — Simulation Experiments — reports results of simulation 
experiments involving ten target problems and more than 1200 runs of the 
program. These data are used to compare qualitatively the performance of 
AMBR with the regularities observed in human analogy-making. 

Chapter VII — Evolving AMBR: AMBR4 ? — discusses the limitations of the 
current version and suggests ways in which the model could be extended in the 
future. In particular, it gives some ideas about modeling the subprocess of 
analogical transfer. On the other hand, it introduces a research project aimed at 
adding perceptual capabilities to DUAL and AMBR. It also presents the 
TEXTSCREEN micro-domain that can be used as a testbed for this project. 

Chapter VIII — Conclusion — concludes this dissertation with a summary of 
its main points and a discussion of the contributions of this project. 

Appendix A provides a sample of full-fledged agent definitions.  
Appendix B gives simplified propositional representations of all episodes 

used in the experiments. 
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CHAPTER II 

BACKGROUND 

2.1. The Phenomenon of Analogy 

Analogy has been the focus of much cognitive research. (For reviews see 
Gentner, 1989; Goshwami, 1992; Holyoak & Thagard, 1995; Keane, 1988). Still, 
there is no universally accepted definition. Michalski (1989) explained analogy 
as a superposition of induction and deduc tion. On the contrary, Holyoak and his 
collaborators (Gick & Holyoak, 1983; Holyoak & Thagard, 1995; Hummel & 
Holyoak, 1996) considered schema induction as a consequence of a successful 
analogy. There are, however, some ideas that have received widespread 
support. The following excerpt from Gentner (1989, p. 201) provides a starting 
point: 

[A]nalogy is a mapping of knowledge from one domain (the base) 
into another (the target), which conveys that a system of relations that 
holds among the base objects also holds among the target objects. 
Thus, an analogy is a way of focusing on relational commonalties 
independently of the objects in which those relations are embedded. 

The importance of structure, or system of relations, has been demonstrated 
in many studies (Gentner & Landers, 1985; Gentner & Toupin, 1986; Clement & 
Gentner, 1991). Objects from the two situations are seen as counterparts when 
they fulfill similar roles in the respective relational struc ture. The degree of this 
structural overlap or quasihomomorphism (Holland et al., 1986; Holyoak & 
Thagard, 1989) determines to a large extent the soundness of an analogy. 
Central to the mapping process is the principle of systematicity : People prefer 
to map connected systems of relations governed by higher-order relations with 
inferential import, rather than isolated predicates (Gentner, 1983, 1989). 

Thus, analogy making involves a mapping process that aligns structured 
descriptions of the two episodes and establishes a set of correspondences. 
There does not need to be any resemblance between individual elements of the 
two descriptions. Various theorists have suggested, however, and empirical 
evidence confirms, that object and predicate semantic similarity influence the 
mapping process, with high similarity leading to greater ease of mapping 
(Gentner & Toupin, 1986; Holyoak & Koh, 1987; Ross, 1987). This is especially 
clearly seen when objects and roles are 'cross mapped' (Gentner & Toupin, 
1986; Ross, 1987, 1989). 

Semantic similarity is much more important for analog access — the 
process of finding and accessing a suitable analog from long-term memory. 
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There is considerable evidence that this process relies more on semantic 
commonalties and less on structural commonalties than does mapping. For 
instance, people often fail to access potentially useful analogs if they have too 
little semantic overlap with the target problem (Gick & Holyoak, 1980, 1983; 
Ross, 1989). Spontaneous analogies from remote domains seem especially 
difficult (Seifert, McKoon, Abelson, & Ratcliff, 1986; Keane, 1987). 

Holyoak and Thagard (1989, 1995) have proposed the multiconstraint 
theory in an attempt to summarize these experimental findings. According to this 
theory, analogy-making is governed by a combination of the following three 
constraints: (i) structural consistency — the pressure to identify and use an 
isomorphism between the descriptions of the two situations, (ii) semantic 
similarity  — the pressure to map elements with some prior semantic similarity 
(e.g. joint membership in a semantic category), (iii) pragmatic centrality — the 
pressure to give preference to elements that are deemed especially important to 
goal attainment, and to try to maintain correspondences that can be presumed 
on the basis of prior knowledge. All three constraints are conceptualized as ‘soft’ 
— they do not operate as unviolable rules but rather as competing pressures 
(Hofstadter, 1984). 

According to the multiconstraint theory, all three constraints play a role 
throughout the whole process of analogy making (Thagard, Holyoak, Nelson, & 
Gochfeld, 1990; Holyoak & Thagard, 1995). However, the constraints affect the 
different subprocesses to a different degree. Thus, semantic similarity seems to 
dominate the process of analog access but the other two constraints also play a 
role. Structural consistency exerts its major impact in the mapping process. Later 
stages of analogy-making are very sensitive to pragmatic pressures. More 
specifically, they are very important during analogical inference (or transfer) and 
evaluation — the processes of augmenting the target description and verifying 
the consistency of the inferences. 

There are a number of other factors that also influence the course of 
analogy-making. Thus Keane (1994) has demonstrated an order effect on 
analogical mapping. Specifically, mapping is faster and more accurate when the 
order of presenting the target elements to the subject encourages a correct initial 
correspondence, which can then constrain subsequent mappings. Kokinov 
(1990, 1994a) provides evidence for priming effects on analogy-making (and 
problem solving in general). In these experiments, exposure and work on 
selected problems affected the performance on a later problem. The magnitude 
of this effect decreased with time. Other data by the same author and his 
collaborators (Kokinov & Yoveva, 1996; Kokinov, Hadjiilieva, & Yoveva, 1997) 
are indicative for context effects on problem solving. 

All these empirical findings must be taken into account when building and 
evaluating cognitive models of analogy-making. The following section presents a 
brief overview of some of these models.  
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2.2. Models of Analogy-Making 

Analogy-making is a very complex phenomenon and it is very difficult to 
embrace all of it at once. As a consequence, most models in the field could be 
characterized by the ancient maxim 'Divide and conquer!' That is, analogy-
making is usually conceived of with reference to separate  stages or phases. 
While this thesis advocates a different and more interactionist approach, this 
conceptualization is necessary for expository purposes. Thus, one possible 
division includes: 

Perception  (representation building) of the target problem; 

Retrieval of an appropriate analog (or base) from long-term memory; 

Mapping the base onto the target to find corresponding elements; 

Transfer of knowledge from the base to the target. 

Evaluation of the imported knowledge within the target framework;  

Learning and generalizing the new experience for use in the future. 

These stages are supposed to be relatively independent from one another 
and thus susceptible to piecemeal exploration. Different researchers focused 
their attention on different aspects of analogy making, each building a model that 
highlights some issues at the expense of others. 

In contrast, the AMBR project advocates the strategy of integration. This does 
not mean, however, that we overlook the honored 'Divide and conquer!'  On the 
contrary, we think it has given rise to quite a lot of knowledge which could (and 
should) serve as a springboard for any further research. Out of the many models 
reported in the literature (Anderson & Thompson, 1989; Carbonell, 1983; Evans, 
1968; Hall, 1989; Holland, Holyoak, Nisbett, & Thagard, 1986; Kedar-Cabelli, 
1988; Kolodner, 1993; Veloso, 1994), the following subsections discuss those 
which have directly influenced our work. 

2.2.1. SME and MAC/FAC 

The Structure Mapping Engine (Falkenhainer, Forbus & Gentner, 1986; 
Forbus & Oblinger, 1990; Forbus, Ferguson, & Gentner, 1994) is a computer 
implementation of Dedre Gentner’s Struc ture Mapping Theory (1983). It is 
designed as a domain-independent analogical matcher. It takes two inputs: a 
base description and a target description. Both are in predicate calculus. The 
model does not use any semantic knowledge. It relies on purely syntactic 
operations to produce a set of correspondences. The underlying intuition is that 
syntax can capture meaning. Thus, enti ties (individual objects and constants) are 
mapped onto other entities, functions are mapped onto other functions, attributes 
(one-place predicates) are ignored, and relations are carried across. Special 
priority is given to higher order rela tions, thus conveying the systematicity 
principle postulated by the theory.  
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A serious limitation of the model is that it depends on identicality of 
predicate names. In the widespread version of the program, the matching 
algorithm requires that the predicates at the top of the relational structure are the 
same. These local matches are then recursively expanded to subordinate levels 
of the structure. Thus, the identicality restriction applies most forcefully precisely 
at the level which is most important according to the theory — the high order rela-
tions. 

The shortcomings of the identicality restriction became apparent when SME 
was used as a building block for bigger systems (Falkenhainer, 1988, 1990a). 
Subsequent versions of the Mapping Engine (Falkenhainer, 1990a) have relaxed 
this restriction by applying minimal ascension through an is-a hierarchy and/or 
using role information (i.e. the dependencies which a given element satisfies). In 
our view, these are important improvements of the model. Still, most applications 
of SME reported in the literature (e.g. Forbus et al., 1994) use the ‘default’ rigid 
identicality. 

More generally, the weakness of SME is that it relies very heavily on the form 
of the represented knowledge. For instance, the model differentiates strongly 
between attributes and relations — the former are ignored while the latter are 
the cornerstone of mapping. Yet, the only difference is that attributes are 
predicates with one argument while relations have two or more. Logically, each 
attribute can easily be transformed into an equivalent relation and vice versa, 
e.g. hot(X) <--> temperature-of(X,high). The model thus depends 
on a putative re-representational module to accommodate this difficulties. How-
ever, there are no guidelines about how such module could be built and what 
criteria separate the facts that must be represented as attributes from those rep-
resented as relations. In practice, it is the human programmer who represents 
the situations in such a way that they be handled by the model. 

Despite its limitations, the Struc ture Mapping Theory and SME are very 
influential pioneering work and their importance cannot be questioned. Gentner 
(1983) was the first to advocate that analogy depends on structure in a period 
when all kinds of similarities were explained by feature overlap (Tversky, 1977). 
Nowadays the importance of struc ture and systematicity is taken for granted. In 
general, the essence of a situation — the part that should be mapped — is a 
high-level coherent whole, not a collection of isolated low-level similarities. 

Moreover, SME is one of the few analogy models that have been success-
fully used as building blocks for bigger systems (e.g. Falkenhainer, 1990b). 

SME is a key component of the MAC/FAC model of similarity-based 
retrieval (Forbus, Gentner, & Law, 1994). The model explains retrieval in terms of 
a two-stage process. During the first stage (MAC), a cheap filter is used to weed 
out the majority of episodes in the long-term memory. This filter is based on dot 
products over content vectors — flat enumerations of the functors participating in 
the respective episode description. The second stage (FAC) then takes the out-
put of MAC and subjects the candidates to more expensive processing. It uses 
SME (working in literal similarity mode) to assess the struc tural overlap 
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between the candidate and the probe. Selection in both cases is based on 
comparing numerical scores against predefined thresholds. 

This computational scheme has a number of engineering advantages. From 
a psychological point of view, however, it is questionable whether the cognitive 
system uses two different representations for each memory item. Moreover, 
each of the two representations seems too rigid and static. As argued later in 
this thesis (e.g. section 4.5), such centralized representations of situations 
cannot explain well the flexibility of analog access. It is not clear how MAC/FAC 
could account for the context and priming effects in analogy-making (Kokinov, 
1994a). 

2.2.2. IAM 

The Incremental Analogy Machine (Keane & Brayshaw, 1988; Keane, 
Ledgeway, & Duff, 1994) is another model of the mapping stage in analogy-
making. It starts by identifying a seed group in the base situation and picks up a 
seed element from that group. Like SME, IAM also relies on syntactic criteria for 
choosing the seeds. More concretely, the seed group is the group of predicates 
having the most higher order connectivity between its elements. The seed 
element is sought among the relations that take multiple arguments. 

The main idea of the model is to establish a seed match relating the seed 
element to some target element and then use this match to incrementally grow a 
whole set of coherent matches. The match rules that carry out this task are 
sensitive to the structural, semantic, and pragmatic constraints on analogical 
mapping. The seed is used for disambiguation of ambivalent cases. All 
decisions are made sequentially, which requires backtracking when a 
commitment is inappropriate. 

The backtracking algorithm allows IAM to work in limited working memory 
and produces order effects. Both properties are psychologically desirable 
(Keane et al, 1994). On the other hand, backtracking amounts to exhaustive 
search which casts doubts on IAM’s abilities to scale up. It seems to us that 
mapping should be done as a combination of sequential and parallel processes. 
Most of the criticisms to SME apply to this model too. 

2.2.3. ACME and ARCS 

The Analogical Constraint Mapping Engine (Holyoak & Thagard, 1989) is 
another influential pioneering model. It has introduced the notion of constraint 
satisfaction to the analogy literature. The model uses a massively parallel con-
nectionist algorithm to find a globally consistent set of correspondences between 
the two descriptions being mapped. The main idea is to build a constraint satis-
faction network (CSN) with nodes representing hypothetical correspondences 
and positive and negative links enforcing the constraints. After a relaxation pro-
cess, the network settles in a state representing a (potentially suboptimal) 
solution to the constraint satisfaction problem. 
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Like the models discussed above, ACME starts with a propositional 
description of the two situations. It then ‘translates’ these representations in con-
nectionist terms using a centralized symbolic algorithm. There is no genuine 
interaction between the symbolic and connectionist components. Therefore, 
ACME can be considered as a precursor of hybrid models but in itself it does 
not constitute such a model. 

A weakness of the model is that it constructs too many hypotheses — all ele-
ments from the target are paired with all elements from the base, with the restric-
tion that objects must map to objects, one-place predicates to one-place 
predicates, etc. Most of these hypotheses are completely implausible and have 
to be suppressed later. In addition, the size of the resulting network is too 
demanding for the working memory of the system (Keane et al., 1994; Kokinov, 
1994a; Hofstadter, 1995; Hummel & Holyoak, 1997). 

ACME has other limitations that are discussed at various places in this 
thesis. Still, the idea of constraint satisfaction has been adopted in AMBR and is 
the foundation of one of its main mechanisms. The model has certainly 
influenced our work. There are many differences between the two models, how-
ever, as presented in detail in section 5.4.1. 

A complementary model — ARCS (Analog Retrieval by Constraint Satis-
faction) — applies the constraint satisfaction idea to the task of analog retrieval 
(Thagard, Holyoak, Nelson, & Gochfeld, 1990). The model first scans the whole 
episodic memory and looks for episodes having element(s) similar to some 
target element(s). It constructs a node for each tentative correspondence 
between a source episode and the target. More nodes hypothesize correspon-
dences between individual propositions. ARCS then sets appropriate excitatory 
and inhibitory links and relies on the relaxation procedure to decide which analog 
best satisfies the constraints. 

The model uses a semantic knowledge base for estimating the degree of 
semantic similarity between various entities. These estimates, however, are 
static. To illustrate, synonyms always count for 0.6, superordinates for 0.3, etc. 
As Kokinov (1992b, 1994a) has argued, however, this approach fails to reflect 
the dynamic and context-sensitive nature of human similarity judgements. 

ARCS is broadly similar to MAC/FAC in that it uses a semantically based 
preliminary screening to identify candidate analogs and then applies the 
mapping machinery (although running in economical mode) to do more careful 
analysis. In effect, both models put a limited matcher inside the retrieval module. 
This creates redundancy when the retrieved episode is passed to the main 
mapping machine. We argue that there are better ways for integrating the two 
subprocesses in analogy-making. 
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2.2.4. LISA 

Hummel & Holyoak (1997) propose an integrated model of analogical 
access and mapping called LISA (Learning and Inference with Schemas and 
Analogies). This is a structure-sensitive connectionist model and as such 
combines the advantages of the symbolic and subsymbolic approaches to 
cognitive modeling. The model represents propositions as distributed patterns of 
activation over units representing semantic primitives. The distributed represen-
tation brings flexibility and generalization capabilities. LISA uses dynamic 
binding to combine these representations into propositional structures. Thus it 
achieves the structure sensitivity that is crucial for analogy-making. The cost for 
this is that LISA must operate within inherent capacity limits given by the size of 
the phase set required for the dynamic binding. The authors of the model argue 
that similar limitations arise in human reasoning. 

A key innovation is that LISA treats analogical mapping as a form of 
learning. The model establishes correspondences by gradually learning weights 
of the mapping connections between various elements. This allows the model to 
arrive at globally consistent mappings without the need of massively parallel 
constraint satisfaction. Moreover, analog access and mapping are integrated — 
they are treated as processes of guided pattern classification.  

Due to these powerful and flexible mechanisms, LISA has been able to 
simulate various empirical phenomena with considerable success (Hummel & 
Holyoak, 1997). It advances the research on analogy in many ways. Still, the 
model is not without its problems. 

One open question involves the size of the descriptions that the model can 
handle. Due to the distributed representations, quite complex machinery is 
required to maintain even a simple proposition. Things become even more 
complicated with hierachical struc tures. Although the representational scheme 
can in principle support descriptions of arbitrary complexity, most of the experi-
ments reported so far deal with extremely simple cases — usually only one or 
two non-hierarchical propositions per episode. Given that the model depends on 
learning to accrue coherence by means of cycling through the propositions in the 
driver, it could face difficulties with bigger analogs. More concretely, when the 
length of the driver set increases there is a risk that later propositions undo the 
connections learned by earlier ones before the set is over and the initial proposi-
tions are reinforced.  

Another shortcoming is that LISA uses what we call centralized representa-
tions of situations. Each situation could be in one of three modes (driver, 
recipient, or dormant) and all elements are simultaneously flipped from one 
mode into the other. This implies that LISA, like ARCS and MAC/FAC, treats the 
episodes in the long-term memory as units —they are either retrieved wholesale 
or not at all. As argued later in the thesis (subsection 4.5.1.) this approach has 
certain disadvantages. 
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2.2.5. Copycat and Tabletop 

All models cited so far start from a hand-coded representation of the target 
problem 'implanted' into the ir working memory. In other words, they by-pass the 
task of building an appropriate representation of the target situation. There are 
strong arguments, however, that this latter perceptual aspect is crucial to analogy 
making (Chalmers et al., 1992). Without it, a large and important part of the over-
all task is done by the coder of representations (i.e. the human programmer) 
instead of the model. All models discussed so far suffer from this limitation. The 
current version of AMBR makes no exception. 

The intimate interplay between perception and analogy-making is the 
defining feature of the work of Douglas Hofstadter, Melanie Mitchell, and Robert 
French (Hofstadter, 1984, 1995; Mitchell, 1993; French, 1995). Their models — 
Copycat and Tabletop — constitute an important bridge over the gap that 
separated research on analogy-making from that on perception. Both models 
build their own descriptions of the problems they work with. For Copycat, the 
problems involve letter strings in a micro-domain; Tabletop deals with arrange-
ments of objects on a table. The perceptual activity goes in parallel with the 
process of building correspondences between different elements of the situation. 
Thus the two processes can influence each other. 

Fundamental to Copycat and Tabletop is the notion of statistical 
emergence: the program’s macroscopic behavior emerges from the interaction 
of a large number of low-level activities in which probabilistic decisions are 
made. There is no central executive that controls the operation the system. 
Instead, all processing is done by small entities called codelets  that create, 
mediate, and respond to various pressures. This provides for great flexibility. 
The model presented here shares many of these ideas, although in a different 
form. 

Both Copycat and Tabletop lack any episodic memory and do not address 
the problem of accessing a source analog from a large pool of  past episodes. 
Thus, they leave an indispensable component of analogy-making out of their 
scope, just as models such as LISA and AMBR do with perception. 

 



- 15 -  

CHAPTER III 

AMBR IN BROAD STROKES 

The aim of this chapter is to present a concise and relatively self-contained 
description of the model AMBR and the archi tecture DUAL. 

It is impossible to speak about AMBR without mastering DUAL terminology 
presented briefly below.  DUAL is a general cognitive archi tecture which is the 
foundation of the model.  It was proposed by Kokinov (1994a,b,c).  By far, the 
most detailed description of the archi tecture can be found in (Petrov, 1997). 

3.1. DUAL Cognitive Architecture 

3.1.1. Main Ideas of DUAL  

DUAL is a general-purpose cognitive architecture that comprises a unified 
description of mental representation, memory structures, and processing mech-
anisms. All these aspects of the architecture are organized around a small set of 
principles: 

• Hybridity.  DUAL is hybrid — it consists of complementary aspects. 
Moreover, it is hybrid in two ways. On one hand, it hinges upon the 
symbolic/connectionist distinction and the integration between the two. On the 
other, there is the declarative/procedural distinction and integration thereof. The 
four aspects derived from these two pairs are merged together coexist at every 
level of granularity in the architecture. 

• Emergent computation. All processing and knowledge representation 
in the archi tecture is carried out by a cohort of small entities called DUAL agents. 
There is no central executive that controls the whole system, allocates resources, 
resolves conflicts, etc. Instead, there are small-scale DUAL agents and local inter-
actions between them.  The global behavior of the system emerges from the self-
organizing pattern of these interactions. 

• Dynamics and context-sensitivity. An important feature of DUAL’s 
operation is that it is constantly changing in response to influences from the envi-
ronment. This is possible due to the emergent nature of the processing and the 
lack of rigid centrally imposed algorithm. 
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3.1.2. Basic Terms and Levels of Description 

The basic structural and functional unit of DUAL is the DUAL agent. Due to its  
importance, the DUAL agent has synonymous names: micro-agent or simply 
agent. Other names like node and unit are used to bring connotations from other 
theories, notably semantic networks and connectionism. It is important to note 
that throughout this thesis all the aforementioned terms refer to the same 
concept: the DUAL agent. 

DUAL agents are the smallest building blocks of DUAL. Strictly speaking, in 
the archi tecture there is nothing but agents of various kinds. They interact with 
one another and thus combine into larger complexes. The interactions between 
agents are very important in DUAL because they keep the architecture together. 
They are often reified and called links, especially in contexts where the agents 
are called nodes. 

A major architectural principle of DUAL is that larger structures emerge from 
the interaction of smaller ones. Thus, one can consider building blocks of in-
creasing size. DUAL agents are at the beginning of this succession, followed by 
coalitions, and formations. There is no sharp boundary between the latter terms. 
As a rule of thumb, a coalition consists of a relatively small number (e.g. less than 
20) of interconnected DUAL agents while formations are much bigger. 

DUAL-based models are complex systems and must be analyzed at different 
levels of granularity. It is useful to distinguish the following three levels: 

The microlevel (agent level) deals with DUAL agents. Relevant topics here 
include the internal structure of a agent, its information-processing abilities, the 
differences among agents of different types, etc. 

The mesolevel (coalition level) deals with coalitions of DUAL agents. A 
coalition is a set of agents and a pattern of interactions among them. Coalitions 
have two very important properties: they are emergent and dynamic. Thus, the 
mesolevel deals with the interactions between the DUAL agents, the emergence 
of non-local phenomena out of local activities, the dynamics of the organiza tion 
of DUAL agents into coalitions, etc. 

The macrolevel (system level) deals with formations of DUAL agents and 
with whole models. Formations consist of big populations of agents and define 
the macroscopic structure of DUAL models. It is at this level where psychological 
concepts like working memory, mapping, and analogy start to play the lead. 
They help describe the overall behavior of DUAL-based models and to compare 
them with other cognitive models and with humans. 

These three levels are not independent. In fact, it is impossible to tell them 
apart. To illustrate, any analysis of coalitions crucially depends on the properties 
of their individual members. Conversely, a large part of the description of a DUAL 
agent is devoted to its interactions with other agents. Changes made at one level 
propagate to neighboring levels, recursively. For expositional convenience, 
however, each level is discussed in a separate subsection below. 
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3.1.3. DUAL at the Microlevel 

At this lowest level of granularity, the entity of main interest is the DUAL 
agent: its internal organization and operation, as well as its interactions with 
peers. Micro-agents are very important in DUAL because everything in the 
architecture ultimately boils down to them and their interactions. They are the 
‘building blocks’ that compose larger structures — coalitions, formations, and 
systems. 

A very fundamental property of DUAL agents is that they are 
hybrid entities. They bring together ideas that are usually considered 
in opposition.  In DUAL, opposites are not treated as irreconcilable 
antagonists but rather as complementary aspects of a harmonious 
whole. 

Moreover, DUAL agents are hybrid in two ways. On one hand, they have both 
connectionist and symbolic aspects; on the other, they serve both as 
representational and processing units. These two dimensions are orthogonal 
and thus form the four aspects shown in Table 3.1. 

 Representation Processing 
Connectionist 
aspect 

activation  
level 

spreading 
activation 

Symbolic  
aspect 

symbolic 
structures 

symbol 
manipulation 

Table 3.1. Different aspects of Dual agents. (Compare 
with table 3.2.) 

From the connectionist perspective, each DUAL agent is a unit in a neural 
network. It has an activation level attached to it and continuously spreads 
activation to other agents. From the perspective of the classical symbolic 
approach to cognitive modeling, DUAL agents are symbols — they stand for 
something else. Concretely, they represent various concepts, objects, relations, 
etc. In addition to this representational aspect there is a procedural one: agents 
manipulate on symbols. They can receive symbols from other agents, store them 
in local memories, transform them (thus producing new symbols) and so on. 

DUAL agents interact intens ively with one another. These interactions are 
very important because they are the fabric combining agents into larger 
complexes. DUAL interactions are relatively simple — they always involve only 
two micro-agents. One of them takes the initiative and either reads or sends 
some information to the other. Combined with the connectionist/symbolic 
distinction, this makes the four aspects summarized in Table 3.2. 
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  Type read Type send 
Connectionist 
aspect 

activation  
level 

spreading 
activation 

Symbolic  
aspect 

symbolic 
structures 

symbolic 
exchange 

Table 3.2. Different aspects of Dual interactions. (Com-
pare with table 3.1.) 

As mentioned earlier, it is often convenient to speak of links instead of inter-
actions. In particular, we can speak of the attributes of a link, notably its weight 
and label. We can also discuss different types of links, draw diagrams with 
circles and arrows, etc. For instance, the phrase ‘a population of interacting 
DUAL agents’ translates into ‘a network of interconnected nodes.’ Throughout this 
thesis, both phrases mean the same thing.    

3.1.3.1. Microframes 

Each DUAL agent is a micro-frame. More precisely, it is the symbolic, 
representational aspect of a DUAL agent that is a microlevel frame. It has slots 
which in turn may have facets. Slots and facets are placeholders — they are filled 
up with fillers. Many fillers are references to other micro-frames and thus link the 
given DUAL agent to its peers. Consider the example on Figure 3.1.3.1. It shows 
the agent representing the concept cup .  This frame has five slots, one of which 
has two facets. 

cup 
 :type :concept 
 :subc (liquid-holder 1.0) 
 :instance ((cup-1 0.3) (cup-5 0.2)) 
 :a-link (saucer 0.5) 
 :slot1 
   :type  :relation 
   :c-coref (cup-md-china 0.5) 

Figure 3.1.3.1. An example of a micro-frame. See text for 
details. 

There are two major kinds of slots: general slots and frame-specific slots  (or 
G-slots  and S-slots  for short). The former have predefined semantics that is 
invariant for all micro-frames. There are different kinds of general slots 
depending on their label. For example, the slot type is filled by a tag denoting 
the type of the agent. The slot labeled subc denotes that the concept (or class) 
represented by this frame is a subclass of another concept. The slot instance 
is filled by (a list of) references to specific instances of the concept, etc. Note that 
each individual reference has a weight. 

In contrast to general slots, frame-specific slots does not have invariant 
semantics. Thus, slot1 in frame1 may mean something very different from 
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slot1 in frame2 . Frame-specific slots also have labels but these are only void 
identifiers serving to distinguish one anonymous slot from the other. S-slots (and 
only they) have facets. Facets can be conceived of as slots within slots. The 
same set of labels applies to both G-slots and facets. 

3.1.3.2. Connectionist processing 

DUAL employs a dual representation scheme. Facts are represented 
symbolically by micro-frames, while their relevance to the particular context is 
represented by connectionist means. Each DUAL agent (and hence each micro-
frame) has an activation level attached to it. There is an automatic process of 
spreading activation that continuously restructures the knowledge base, making 
some nodes more accessible and others completely inaccessible. Thus, each 
DUAL agent can be viewed as a node in a connectionist network. It has an input 
zone, activation function and output function (Rumelhart & McClelland, 1986).  

 The output of a micro-agent influences the input zones of the agents that are 
interacting with it. The former acts as a sender in the interactions and the latter—
as receivers. Using the node-and-link terminology, we can say that the node 
sends activation to its neighbors via links. The phrase ‘there is a link from agent 
X to agent Y’ means that agent X has a slot (or facet) filled up by a reference to 
Y. Each link has a weight that controls what portion of the sender’s output is 
allotted to the particular receiver. Weights are usually normalized so that the sum 
of the weights of all outgoing links equals one. 

The connectionist aspect of DUAL agents influences the symbolic one by 
determining the agent’s availability. The notion of availability contributes very 
much to the hybrid nature of DUAL agents — it merges all four aspects from 
Table 3.1. Like the agent itself availability has declarative and procedural 
aspects: 

Visibility. A DUAL system may consist of thousands of agents, each of which 
contains some particular small piece of knowledge. At any given moment, how-
ever, only a small fraction of this large knowledge base is visible. The symbolic 
processes that take place in the architecture can operate only on visible 
declarative elements. In addition, more active (and hence more visible) data 
elements are more attractive to the procedural machinery and thus are more 
likely to be taken into consideration. 

Speed. The availability of a DUAL agent determines not only the visibility of 
its declarative aspect but also the speed of its procedural aspect. Very active 
agents work rapidly and thus determine system’s overall line of computation, low-
active ones work slowly, striving for more power, and inactive ones do not work 
at all. As the pattern of activation over the network of agents changes, the speed 
of individual processors changes accordingly, making the computation 
performed by DUAL-based models dynamic and context-dependent. 
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3.1.3.3. Symbolic processing 

A great deal of the information processing in the archi tecture is symbol 
manipulation — deterministic construction, trans formation, storage, and ex-
change of symbolic structures. We use the general term symbolic processing to 
refer to these activities. They are carried out by the symbolic processors of 
DUAL agents. Each agent has such processor. It also has local memory to 
support the processor’s work. Part of the local memory is permanent; the rest is 
volatile memory. The former keeps the micro-frame with its slots, facets, and 
fillers. The latter consists of an input zone and a buffer. Thus, a typical symbolic 
transaction involves receiving a symbolic structure in the input zone, comparing it 
with old symbols stored in the buffer, and sending it with due modifications to 
some of the agents referenced in the micro-frame. 

The speed of the symbolic processor depends on the connectionist activa-
tion level of the respective DUAL agent. The exact rule for determining the speed 
is based on an energetic analogy that is not discussed here. The interested 
reader is referred to section 3.2.5.3. of (Petrov, 1997). The main idea is that 
each symbolic operation requires  the symbolic processor to do certain amount 
of work to carry it out. Doing work requires energy which is supplied to the 
symbolic processor by the connectionist aspect of the agent. The speed of the 
computation depends on the power (i.e. on the rate of energy supply and 
consumption) which in turn is linearly related to the activation level. 

3.1.4. DUAL at the Mesolevel 

DUAL agents are simple, they cannot do much in isolation. Therefore, they 
depend on one another and form coalitions. A coalition is a set of agents and a 
pattern of interactions among them. It is the entity of main interest at DUAL’s 
mesolevel. 

Coalitions have three very important properties: they are decentralized, 
emergent, and dynamic. None of these properties is present at the level of 
individual DUAL agents (the micro-level). There are ‘tight’ coalitions and ‘loose’ 
coalitions depending on the intensity of the interactions among their members. 
Tight coalitions are characterized by heavily weighted links and by intensive 
exchange of symbolic structures within the coalition. By contrast, loose coalitions 
are characterized by relatively weak links, often temporary ones, and by little or 
no symbolic interchange. There is a whole range between these two extremes. 
Moreover, coali tions do not have clear-cut boundaries. An agent can be involved 
in many of them at once, and to a different extent. Coalitions can ‘recruit’ new 
members, either permanently or temporarily. They may share members and thus 
‘flow’ gradually from one into another. 

Recall that DUAL agents can be seen as representational units — each of 
them stands for some single entity. By extension, coali tions of agents represent 
composite entities like propositions and situations. In the knowledge 
representation scheme adopted in DUAL even a simple proposition is represen-
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ted by a number of agents. In such cases we say that there is a meso-frame that 
consists of several micro-frames.  

Meso-frames can be quite complex, much more complex than any of the 
participating micro-agents). In this way, the expressive power of DUAL‘s 
representation scheme is not limited by the restriction that each agent can have 
only a few slots. Coalitions are limited only by the connectionist mechanism that 
controls the activation level of their individual members and hence indirectly 
restricts the number of agents that can be active at a time. 

The connectionist mechanism is responsible also for determining which 
parts of a meso-frame are relevant. It is possible, especially in loose coalitions, 
that only part of their members are active enough to pass the threshold. Thus, 
only part of the declarative knowledge stored in the meso-frame will be visible. In 
other circumstances, another part of the knowledge will be brought to the fore. 
This makes DUAL meso-frames dynamic and context-dependent.  

From a processing point of view, coalitions are important in DUAL because it 
is at their level where non-local computation emerges. Each ind ividual DUAL 
agent contributes somehow to the collective performance by doing its small and 
local-specific job. Each agent runs at its own speed and in parallel with other 
agents. To succeed in its task, the agent usually depends on other members of 
its coalition. It cooperates with them and competes with the agents from other 
coalitions. The net result of all these activities is that the coali tion as a whole 
accomplishes some computation that is beyond the reach of any individual 
agent. This accomplishment has resulted from an emergent process — it is not 
carried out by any centralized processor following a rigid routine. 

It is important to note that the interaction pattern among the participants in a 
coalition changes dynamically over time. New agents join in, others stay back, 
fall out and so on. In the node-and-link terminology, the topology of the network 
changes via dynamic addition and/or removal of nodes and links. This computa-
tional dynamics plays a key role in the overall flexible and context-sensitive 
behavior of DUAL-based models (Kokinov et al, 1996). 

3.1.5. DUAL at the Macrolevel 

To summarize our presentation so far, at DUAL's microlevel we speak in 
terms of DUAL agents, at the mesolevel — of coalitions. Now, at the highest level 
of granularity  we speak of DUAL formations and systems. A DUAL formation  
consists of a big population of agents — in the order of hundreds or thousands in 
number. A DUAL system consists of all agents that are present at a given instant 
of time, regardless of whether they are active or inactive, permanent or tempor-
ary, etc.  

Most of the agents and, therefore, most of the knowledge and processing in 
the architecture reside in the DUAL network. Most agents in this network are 
permanent but additional temporary ones may be created during the 
computation and added to the total pool. Similarly, most links are permanent but 
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additional temporary ones may be established. Thus, the topology of the network 
is relatively stable but not absolutely frozen. 

The collection of all permanent nodes and links in the DUAL network 
comprise the long-term memory (LTM) of the architecture. It contains the 
system's knowledge (both declarative and procedural) about the world. LTM is 
very big — even for simple domains and situations one needs hundreds or 
thousands of agents. 

In any given moment, however, only a small portion of this large formation is 
actually needed. DUAL provides special mechanisms, the most important of 
which is spreading activation, for effectively determining which agents (and 
coalitions) are relevant to the particular task and context. Recall that each agent 
has an activation level that is the system's estimate of its relevance. So, by 
definition the working memory (WM) of the architecture consists of the set of all 
agents whose activation level exceeds a certain threshold. 

The working memory is the locus of almost all processing in DUAL and, 
therefore, we will consider it in more detail. An agent can enter WM in two ways: 
permanent agents enter it whenever they become active enough to pass the 
threshold; temporary agents must be explicitly created and linked to the network 
by a specialized node constructor. Agents stay in the working memory as long 
as their activation level is maintained above the threshold. When a permanent 
agent 'drops out' of WM, it returns back to dormancy and could enter WM again 
later. Temporary agents, however, have no second chance.  

To sum up, the contents of the working memory may be expressed by the 
following formula: 

WM  =  active portion of LTM  +  temporary agents . 

The activation in the network originates from two special agents. The so-
called input node models the influence of the environment2. The goal node is, in 
a very rudimentary sense, the medium of the ‘intentions’ of the system. The 
human user of the system attaches some agents to these nodes, thus allowing 
for the spread of activation to the DUAL network. The activation then propagates 
via the links and brings some agents from LTM to WM. There is a decay process 
which limits the total amount of activation and hence the size of the working 
memory. 

                                                 
2 In future models it will be replaced by a whole formation — the visual array. 
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3.2. Associative Memory-Based Reasoning 

This section begins the presentation of AMBR — a cognitive model built on 
the basis of the DUAL archi tecture. ‘AMBR’ is an acronym for ‘Associative 
Memory-Based Reasoning’ (Kokinov 1988, 1990, 1994a, 1997) and has been 
conceived as a model with very broad scope. Much of the work on it is still in 
progress. The current version of the model is numbered AMBR3. Previous 
versions were AMBR1 (Kokinov 1994a) and AMBR2 (Petrov, 1997). We fully 
recognize the fact that the model as it currently stands and is reported here is 
incomplete. Here and now AMBR3 is an integrated model of ana logical access 
and mapping. We view this version only as an intermediate stage of a bigger 
project. 

3.2.1. Main Ideas of AMBR 

Since its initial conception (Kokinov, 1988) the AMBR model has advocated 
a set of ideas about human reasoning in general and analogy-making in 
particular. They have been distilled by Kokinov (1997) into the following three 
principles: 

• Integration. The reasoning process cannot be partitioned into a 
sequence of independent stages performed by specialized module -like compo-
nents. Rather, there are subprocesses that run together and each of them is 
potentially influenced by the rest. Each computational mechanism is responsible 
not only to produce its immediate result but also to create appropriate guiding 
pressures for other mechanisms. That is why AMBR is designed as an integrated 
model based on a parallel emergent archi tecture. 

• Unification. Analogy is not a specific mode of reasoning. Rather, 
deduction, induction (generalization), and analogy are slightly different versions 
of the same uniform reasoning process. The same computational mechanisms 
are used in all cases — there is some sort of perceptual processing that builds 
internal representation of the problem being solved, there is some (sub)process 
that accesses relevant information from long-term memory, there is some 
(sub)process that tries to map the new problem to previous knowledge, etc. 
Deduction, induction, and analogy all fit into the same framework, the differences 
being in the outcome of the processing but not in the processing itself. Thus the 
term deduction applies to cases when the new problem happens to match with a 
general old schema, induction goes the other way around, and analogy applies 
when the two situations are at approximately equal level of abstraction. 
Conceptualized in this way deduction and induction are just two extremal (and 
hence very important) points on the analogy continuum. Therefore AMBR is 
designed as a general model of reasoning with emphasis on analogy-making. 

• Context-sensitivity. Human reasoning is context-sensitive. Its outcome 
depends not only on the task and long-term memory knowledge but also on the 
environmental setting, recent activities of the reasoner, etc. AMBR is designed 
with the explicit aim to reflect this context-sensitivity of human thinking. 
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 This thesis focuses on the first point from this list — integration. Deduction, 
induction, context and priming effects are treated elsewhere (e.g. Kokinov, 1990, 
1992, 1994a; Kokinov & Yoveva, 1996). Hence it is warranted to explicate the 
principle of integration of subprocesses in more detail. 

As discussed in Chapter II, theories of analogy-making frequently partition 
the process into a sequence of stages (e.g. Gentner, 1989).  The computational 
models that stem from these theories typically involve separate ‘engines’, each 
of which works on its own and dovetails with the next. The output from the 
retrieval module is fed into the mapping module, whose output in turn is fed to the 
transfer module, etc. This ‘pipeline paradigm’ is illustrated in Figure 3.2.1.1. 
Each module influences the next only via the data structures it passes to it. Occa-
sionally a module could detect a failure and loop back to some earlier module. 

perceptn retrieval evaluatntransfermapping  

Figure 3.2.1.1. Schematic description of the ‘pipeline 
paradigm’ of analogy-making. The whole process is 
broken into a sequence of independent stages. They can 
interact only through the data structures (not shown in the 
figure) that each of them feeds to the next. 

A problem with this approach is that it depends on the tacit assumption that 
all these stages are separable. While this assumption definitely merits careful 
consideration, it is questioned by a number of researchers (Chalmers, French & 
Hofstadter, 1992; Kokinov, 1994a; Hummel & Holyoak, 1997). AMBR follows a 
different track. It adopts an interactionist approach and treats analog access, 
mapping, transfer, etc. as parallel subprocesses rather than serial stages. These 
subprocesses are still ordered in time as suggested by the pipeline approach — 
for instance the mapping begins after the retrieval has begun. However, there is 
no requirement that a stage must end before the next one could begin. On the 
contrary, subprocesses overlap considerably and can interact. This leads to the 
cascade illustrated in Figure 3.2.1.2. 

The interactionist approach seems problematic at first sight because each 
stage (or subprocess for that matter) depends on the result of the previous one. 
Indeed, how could the target problem be mapped to the source when it has not 
yet been even retrieved from memory?! It seems a logical necessity that the 
mapping comes after the retrieval. Similarly, the perceptual stage should come 
first, the transfer should follow the mapping, and so on. 
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perception

access

evaluation

transfer

mapping

 
Figure 3.2.1.2. Schematic description of the interactionist 

paradigm of analogy-making. There are subprocesses 
that overlap in time and can influence each other. 
Compare with Figure 3.2.1.1. 

 AMBR overcomes this difficulty by representing information in smaller 
chunks. The model does not represent episodes as big units that are either 
manipulated wholesale or not at all3. Instead, it represents them as coalitions of 
small elements susceptible of piecemeal manipulation. This allows each sub-
process to begin as soon as the previous one has produced some partial 
results. 

More concretely, as soon as the perceptual mechanisms have built internal 
representations of a few elements of the target problem, the access subprocess 
starts looking in the long-term memory for information that relates to these new 
elements. The concepts, propositions, episodes, etc. that are accessed in this 
way can now influence the perception of the target. In addition, they trigger the 
mapping subprocess which starts constructing the first tentative 
correspondences. If a promising candidate correspondence emerges, it could 
influence both perception and access. Gradually, all subprocesses are at work 
and more and more is perceived, accessed, mapped, transferred, and  so forth. 

This is the upward motion of the ‘wave’ of the reasoning process. Sooner or 
later the wave goes down. A stable representation of the target problem has 
been built and the perceptual mechanisms go off stage. A source episode wins 
the competition with alternative episodes from memory and the access sub-
process diminish. One by one, all subprocesses terminate roughly in the order 
they have started. In this way there is something that could be characterized 
roughly as a sequence of stages. However, the boundaries between the AMBR 
‘stages’ are fuzzy and each one could in principle interact with everyone else. 

Before closing this section we must make the following disclaimer. The 
current version of the model implements only two of the subprocesses drawn in 
Figure 3.2.1.2. — access and mapping. Thus AMBR3 in effect depends on the 
same assumption that was criticized above. It artificially separates these two 
subprocesses from the rest. We admit this is a major flaw of the current version. 
We hope, however, that the model is open-ended enough so that the missing 
components could be added without forcing radical changes in the existing ones. 
Chapter VII contains some preliminary efforts in this direction. Until then, the 
exposition concentrates on what is actually implemented and running. 

                                                 
3 Therefore we prefer the term analog access to retrieval. 



- 26 -  

3.2.2. AMBR Protagonists: Concepts, Instances, and Hypotheses 

As any model based on the DUAL archi tecture, AMBR consists of nothing but 
agents of various kinds. They represent the knowledge and do all information 
processing in the model. Therefore the natural way to begin the presentation of 
AMBR is to introduce the various types of agents used by it. 

Each AMBR agent is a DUAL agent and as such has a micro-frame (see 
section 3.1.3.1). The micro -frame is a bundle of labeled slots one of which 
serves to designate the type of the agent. The label of this slot is type and it is 
filled by a list of tags such as :concept, :instance, :hypothesis , 
:temporary , etc. These tags are used in conjunction with one another to 
account for the variety of agents employed by the model. For example, the type 
slot of some agent can be filled by the list (:temporary :instance 
:relation)  thus stating that the agent in question is a temporary agent 
representing an instance of some relation. 

There are rules that restrict the combinations among different type tags. 
For instance all agents of type :hypothesis are also :temporary . 
Therefore, despite the big number of possible type combinations there are only 
three major types of AMBR agents: concept-agent, instance-agent, and 
hypothesis-agent. These major types have subdivisions as illustrated in Figure 
3.2.2.1. 

AMBR-agent

instance hypothesisconcept

temporarypermanent mature winnerembryo

 

Figure 3.2.2.1. Main types of AMBR2 agents. 

Concept-agents (or concepts for short) represent classes of entities. The 
taxonomy of classes is represented by subc and superc links between the 
concepts. Some concepts are classes of objects such as teapot  and 
liquid-holder while others represent relations such as temperature-of 
and cause. A concept agent may also have references to some of its instances, 
to be associatively related (via a-link) to other concepts, etc. All concepts are 
permanent agents and form the backbone of AMBR’s semantic memory. 

Instance-agents (or instances for short) represent individual instances. Each 
instance agent has an inst-of slot filled by a reference to the concept agent 
representing the class of the instance (Figure 3.2.2.2). There are a several other 
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slots with appropriate labels that relate the instance to other instances, concepts, 
or hypotheses. These links, like the taxonomy-oriented links mentioned above, 
are used by the mechanisms of the model for various purposes. Concept and 
instance-agents are sometimes collectively called entity-agents. 

liquid-holder: 
 :type (:concept :object) 
 :subc container 
 :superc (teapot bottle cup) 
  :a-link liquid 

teapot: 
 :type (:concept :object) 
 :subc liquid-holder 
 :instance (teapot-1 tpot-73) 
  :hypoth   teapot<->bottle 

teapot-1: 
 :type (:instance :object) 
 :inst-of teapot 
 :situation  sit-ABC 
 :hypoth (teapot-1<->bottle-3 
    teapot-1<->bottle-4) 

a)       b) 
Figure 3.2.2.2. Example of concept-agents, instance-agents, 

and some of the links between them. Each micro-frame 
has additional slots (not shown in the figure). All connec-
tionist aspects are omitted. The corresponding node-and-
link diagram is shown to the right. 

Concepts and instances alike are characterized by one more tag in their 
type list — :object, :relation, or :situation. These tags are mutually 
exclusive. An :object  tag means that the micro-frame represents some object 
or a class of objects. All agents in Figure 3.2.2.2. belong to this category. In 
contrast, the :relation  tag is used to designate micro-frames that represent 
some relation. Such micro-frames usually have S-slots (see subsection 3.1.3.1) 
that represent the arguments of the relation. The AMBR representation scheme 
allows to represent both specific propositions such as made-of(teapot-1, 
metal-1) and general propositions such as made-of(teapot,metal) . 
The details of the knowledge representation scheme are given in the next 
chapter. 

Situation-agents (or situations for short) are a special kind of instance-
agents. They are distinguished by the tag :situation in their type slots. 
Contrary to the name of the tag, such agents do not represent whole situations. 
Rather, they represent the spatio-temporal contiguity of a coalition of instances. 
Most instance agents are affiliated to some situation. The medium of this 
affiliation is a slot labeled :situation filled by a reference to the respective 
situation-agent. In the example above, the agent teapot-1 is affiliated to sit-
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ABC. The other elements of this situation (both objects and propositions) will 
have the same reference in their respective slots. Thus the situation-agent that 
they all refer to represents the fact that all these instances have been perceived 
or inferred or remembered on the same occasion. On the other hand, there need 
not be any links from the situation agent to its elements. This is very important for 
the decentralized representation of situations used in AMBR. It is a whole 
coalition of instance-agents that represent a particular problem, scene, episode, 
etc. Each participant is linked to only a few other elements and no one ‘knows’ 
the situation as a whole. 

The mechanisms for analogy-making try to establish correspondences 
between instances from different situations, between their respective concepts, 
and so on. These correspondences are represented in the model by 
correspondence-agents (not shown in Figure 3.2 .2.1), the most important type of 
which are the so-called hypothesis-agents (or hypotheses for short). Each 
hypothesis represents a tentative correspondence between two entities based 
on one or more justifications. The justification of a hypothesis is the reason for 
its creation and maintenance by the system. In AMBR each hypothesis must have 
a justification. (This is one big difference between AMBR and ACME.) The jus tifi-
cation is either semantic or structural, represented by a concept or hypothesis 
agent respectively. 

The hypothesis-agents are organized in a constraint satisfaction network 
(CSN). Coherent hypotheses are connected with excitatory links while 
contradictory ones inhibit each other. This is the main instrument for achieving 
global consistency based on local computations. This approach follows the 
ACME model of Holyoak and Thagard (1989) but there are important differences 
(discussed later in this thesis). Hypothesis agents have a special activation func-
tion (cf. section 3.1.3.2) that gives them competitive power in the CSN. 

Hypothesis agents are constructed on the initiative of their jus tification. In the 
beginning of their life cycle they are created as embryo hypotheses. Those 
embryos that do not coincide with an existing hypothesis establish themselves 
and become mature hypotheses. They compete with the other hypotheses in the 
CSN and become either winner or loser hypotheses.  

The presentation of the last few pages emphasized mostly on the symbolic 
declarative aspect of AMBR agents. Like all agents in the DUAL architecture, 
however, they are hybrid entities and have connectionist and procedural aspects 
as well (see Table 3.1). Different types of agents have different procedural 
knowledge and thus participate in the various computational mechanisms in the 
model. 

3.2.3. AMBR Mechanisms 

This subsection outlines the six basic mechanisms used in AMBR3: 
spreading activation, marker passing, constraint satisfaction, structure corre-
spondence, rating, and skolemization. The presentation is intended to give a 
broad and relatively self-contained overview of these mechanisms and to show 



- 29 -  

how they fit together. Chapter V provides a rigorous and much more detailed 
coverage. 

3.2.3.1. Spreading activation 

As stated earlier, each AMBR agent has a connectionist aspect and acts as 
a unit in a neural network (subsection 3.1.3.2). It receives activation from the 
agents that interact with it, transforms this connectionist input according to its ac-
tivation function, and in turn outputs activation to other agents along weighted 
links. Thus there is a pattern of activation over the whole population (or network) 
of agents. This activation originates from some special agents (see section 
3.1.5) and then propagates the network. There is a decay factor and various 
thresholds that restrict the spread of activation. 

This mechanism is of paramount importance in AMBR. It provides a dynamic 
estimate of the relevance of each individual agent. These estimates are then 
used by other mechanisms for various purposes. It defines the working memory 
of the model by bringing some agents above the threshold while keeping 
irrelevant ones away. This is the foundation of access subprocess in analogy-
making. Spreading activation also underlies the relaxation of the constraint 
satisfaction network. 

Activation plays another very important role in AMBR (and DUAL in general). It 
is the energy supply for the symbolic aspect. More active agents work faster and 
are more visible to other agents (section 3.1.3.3). Thus changes in the pattern of 
activation affect everything else in the model. This makes it dynamic, emergent, 
and context-sensitive. 

3.2.3.2. Marker passing 

Marker passing (MP) is the symbolic counterpart of the spreading activation. 
It has been developed within the semantic network tradition (Quillian, 1966; 
Fahlman, 1979; Charniak, 1983; Hendler, 1988, 1989). In its most basic form it 
is a tool for answering the question, “Given two nodes in the network, is there a 
path between them?”. The idea behind the marker passing is simple: the two 
nodes of origin are marked, they mark their neighbors, which in turn mark their 
neighbors and so forth. 

AMBR markers originate in instance-agents and are then passed by 
concept-agents ‘upward’ in the class hierarchy. That is, markers can go only 
through links labeled :inst-of and :subc. For example, a marker can 
originate from teapot-1 and then pass through teapot, liquid-holder , 
container, artifact, etc. Another marker starting from bottle-7 could 
go through bottle and meet the first one in the concept-agent liquid-
holder. The latter will detect this marker intersection and create a hypothesis 
that teapot-1 corresponds to bottle-7. The concept node becomes the 
justification of the new hypothesis. In this way, the marker passing gives rise to 
semantically grounded hypotheses and triggers the constraint satisfaction 
mechanism. 



- 30 -  

The markers accumulate in the local buffers (see section 3.1.3.3) of concept-
agents and provide a record of all instances of the particular class that are active 
at the moment. This information is then used by other mechanisms for various 
purposes. 

3.2.3.3. Constraint satisfaction 

The marker-passing and structure-correspondence mechanisms create hy-
potheses on the basis of local information only. The constraint satisfaction mech-
anism is responsible to achieve consistency at the level of whole coalitions. To 
that end, AMBR builds a constraint satisfaction network (CSN) with appropriate 
links between hypotheses. The pattern of activation in the CSN then gradually 
reaches a stable state in which a set of hypotheses emerge as winners while all 
others are suppressed. 

In contrast with ACME (Holyoak & Thagard, 1989), the constraint 
satisfaction network in AMBR is tightly interconnected with the main network. This 
allows seamless integration with other mechanisms in the model. For example, 
suppose a particular hypothesis wins the competition and becomes highly 
active. Part of this activation spreads to the concept-agents involved in it. When 
the concepts become more active they process markers faster, which will tend to 
generate more hypotheses of the same kind. If the hypothesis is about instances, 
it will activate them and they in turn will support the other instances of the same 
coalition, etc. 

Another important property of the constraint satisfaction network in AMBR is 
that it is built in a decentralized and incremental fashion. Individual hypotheses 
come one by one in the order of their creation. (Which, by the way, reflects the 
system’s current estimates of the relevance of the elements involved.) This 
poses the question of how to avoid duplication of hypotheses and to establish 
the links needed for the relaxation algorithm. This is the responsibility of the hy-
potheses themselves aided by the so called secretaries. 

Each instance- or concept-agent has a secretary associated with it. The 
secretary is not a separate agent; it is part of the entity-agent itself. The job of the 
secretary is to keep track of the hypotheses involving the agent in question. It 
records them in the :hypoth  slot of the agent (cf. Figure 3.2.2.2) and handles 
hypothesis registration requests . 

Whenever an embryo hypothesis is born it contacts the secretaries of its two 
elements and requests registration. The secretaries receive these requests, 
consult their records, and send secretary answers to the hypothesis. There are 
several kinds of answers but basically they all belong to one of the following two 
major types. If the new hypothesis is a duplicate of an existing one, it is advised 
to resign in its favor. The resigning hypothesis hands over its justification to the 
favorite and then fizzles out. In this way many hypotheses in the CSN have 
several justifications even though each of them is born with only one. The links to 
and from justifications are excitatory and connect the CSN with the main network. 
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The second major type of secretary answer is establish. It is sent to hypoth-
eses that represent some novel correspondence. When the embryo hypothesis 
receives such answer it becomes mature and enters the competition with other 
mature hypotheses. The answer contains a list of the alternative hypotheses 
registered at the secretary. They are the rivals of the new one and it creates 
symmetrical inhibitory links with them. In this way each mature hypothesis 
becomes incorporated in the network. When it achieves this status it starts 
generating its own ‘child’ hypotheses via the structure correspondence mechan-
ism. 

3.2.3.4. Structure correspondence 

The structure correspondence (SC) mechanism generates new hypotheses 
on the basis of existing ones. It is also responsible for the excitatory links 
between coherent hypotheses. Either way, it fosters the systematicity of the 
mapping that emerges out of the constraint satisfaction network (Gentner, 1983). 

There are several types of struc ture correspondence in AMBR: bottom-up, 
top-down, weak, etc. They are exp lained in detail in Chapter V. This subsection 
only conveys the general idea by providing selected examples.  

Suppose there is a mature hypothesis involving two instance agents, e.g. 
teapot-1<->bottle-3. The bottom-up SC will create a new embryo hypoth-
esis at the level of concepts. Namely: teapot<->bottle. If the instances are 
affiliated to situations, the struc ture correspondence mechanism will construct an 
embryo hypothesis about them too, e.g. sit-ABC<->sit-XYZ. These new hy-
potheses are likely to coincide with ones created earlier by some other agent. In 
these cases the secretaries of, e.g., teapot and sit-XYZ will detect the 
duplication and the redundant hypotheses will be forced to resign in favor of the 
older ones. Still, excitatory links between teapot-1<->bottle-3 and the 
respective concept- and situation-level hypotheses will be established. This 
creates the pressure that instances of the same concept and/or the same 
situation are mapped consistently to instances of the other concept/ situation and 
vice versa. 

The top-down SC applies when there is a mature hypothesis involving 
propositions. For instance, suppose that the agent made-of-1 represents the 
proposition that teapot-1 is made of metal-1. Suppose further that made-
of-3 states that bottle-3 is made of glass-3. Then the hypothesis made-
of-1<->made-of-3 will generate the hypotheses teapot-1<->bottle-3 
and metal-1<->glass-3. (It will also generate bottom-up hypotheses like 
made-of<->made-of, etc.) 

The hypothesis teapot-1<->bottle-3, however, is probably con-
structed already by the marker passing mechanism (because both are liquid 
holders). The secretaries will then do their job and the SC-generated embryo will 
resign in favor of the MP-generated mature hypothesis. In the end the latter will 
have two justifications: semantic and  structural. This gives it better competitive 
power in the CSN. 
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3.2.3.5. Rating and promotion 

Another responsibility of the secretary is to rate the relative success of each 
hypothesis on its secretary list. It checks at regular intervals who is the current 
leader among the hypotheses. That is, which one has the greatest activation 
level. The secretary maintains ratings for each hypothesis. Ratings are numerical 
values indicating how long the particular hypothesis has led the competition. 
When a hypothesis maintains a leading status long enough, it is promoted into 
winner. 

Thus, the rating mechanism promotes current leaders into final winners. This 
is done by a form of competitive learning algorithm. The secretary performs 
rating surveys at regular intervals. Each survey detects the leader and increases 
its rating at the expense of the ratings of its competitors. The magnitude of the 
change is proportional to the margin between the activation levels of the leader 
and the second best hypothesis. When a particular rating reaches some critical 
level, the rating mechanism triggers the promotion mechanism for the 
respective hypothesis. 

In addition to promoting winners the rating mechanism also eliminates 
losers. When a particular rating drops too low and the activation level of the 
respective hypothesis is also low, the hypothesis is sent a fizzle message that 
causes it to die. Non-leader hypotheses that maintain a reasonably high activa-
tion level are kept as plausible alternatives to the leader. In this way the 
constraint satisfaction network is trimmed of very implausible hypotheses without 
ruling out any possibility a priory. This adds another dimension to the dynamics 
of the CSN — its topology changes both by adding and removing nodes and 
links.  

Still another function of the rating mechanism is to trigger the skolemization 
mechanism upon necessity. 

3.2.3.6. Skolemization 

AMBR skolemization is a technique for augmenting the description of some 
particular episode on the basis of general semantic information. This is an 
advanced topic that is discussed in detail in Chapter V. This subsection 
provides an example that conveys the overall idea.  

Suppose that the target situation contains a teapot and its material is 
explicitly represented: teapot-1 is made of metal-1. Suppose further that 
teapot-1 is mapped to bottle-3 belonging to some other situation. The 
description of the latter, however, lacks explicit proposition about the material of 
bottle-3. Thus there is no counterpart of the target proposition made-
of(teapot-1, metal-1). 

The semantic memory, however, contains a general proposition that bottles 
are (usually) made of glass. These general proposition is represented by an 
instance of the relation made-of. This instance is not affiliated to any situation 



- 33 -  

(cf. section 3.2.2) and one of its arguments is a concept-agent. For example, it 
might be of the form made-of(bottle, prototype-glass). This 
proposition is handled by AMBR mechanisms in the usual way — it emits a 
marker, that marker intersects in the concept-agent made-of with the marker 
emitted by the specific proposition in the target, the marker intersection gives 
rise to a hypothesis, etc. Suppose that this general hypothesis wins the 
competition in the constraint satisfaction network (for lack of a better alternative). 

The rating mechanism detects that the leading hypothesis involves a general 
proposition and triggers skolemization. The latter will construct a skolem 
proposition that concretizes the general proposition. In the example above, the 
mechanism will create skolem instances of the concepts made-of and glass. 
No instance of bottle is needed because the recipient situation already has 
one as indicated by the marker from bottle-3 stored in the local buffer of 
bottle. The final outcome of the skolemization is that the material of bottle-
3 is taken by default to be sk-glass-3, where sk-glass-3 is a skolem 
instance of the concept glass. This new agent affiliates to the situation 
containing bottle-3. It then emits a marker, which will intersect in the concept 
material with the marker originating from metal-1. This will create the 
semantically-grounded hypothesis metal-1<->sk-glass-3 which enters the 
competition with high chances of success as teapot-1 is already mapped to 
bottle-3. 

3.2.4. Overview of a Run 

This final section pulls everything together and shows how the computational 
mechanisms described above can be applied to the task of analogy-making. 

In the present version of AMBR, the work on a problem begins with a hand-
coded representation of the target situation. Some of the agents that participate 
in the (decentralized) description of this situation are attached to the special 
nodes that are sources of activation in the model. The goal element(s) are 
attached to the goal node; some of the other elements are attached to the input 
node, thus mimicking the perceptual mechanism. The input list can also include 
elements that do not belong to the target situation, thus modeling the external 
context. It is possible that target elements are presented to the sys tem not 
simultaneously but incrementally, giving rise to various order effects. 

Once the target elements are connected to the source nodes, the 
associative mechanism begins to operate. The activation spreads through the 
long-term memory and brings relevant conceptual and episodic information to 
working memory. Shortly after, the marker-passing mechanism joins in, as 
instance-agents emit markers upon entering the WM. The markers begin 
propagating the active portion of the network. 

Marker intersections provoke the construction of hypothesis-agents, thus 
triggering the constraint-satisfaction mechanism. After consulting the 
secretaries, the hypotheses initiate the structure-correspondence mechanism. 
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The secretaries register more and more hypotheses and rate their relative 
success. 

Gradually, a number of agents enter the working memory. The activation 
does not spread unrestricted, however, and the intensity of memory access 
declines as the decay of activation prevents the nodes that are too far away from 
passing the threshold. Usually, two or three situations are retrieved in full and a 
few others only partially. These are the candidates for base analogs. In addition, 
the relevant concept-agents are also active and ready to guide the mapping. 

 The associative mechanism never stops completely because agents 
occasionally get in or fall out of the working memory. Moreover, the associative 
mechanism is responsible for controlling the speed of the symbolic aspect as 
well as for settling the constraint satisfaction network. 

Meanwhile, the marker-passing mechanism has generated several 
hypotheses. In turn, they have created additional hypotheses via the structure-
correspondence mechanism. The CSN has thus become fairly elaborate and 
winning correspondences begin to emerge. The hypotheses standing for such 
correspondences are promoted to winners. This makes them even more active 
and provides strong support for the respective entities in the main network. In this 
way, the base situation that best matches the target is fully and unambiguously 
accessed. All its elements enter working memory. The skolemization mechanism 
adds even more elements if such are needed to better match the target. 

Sooner or later all secretaries of the target promote their winners. The 
mapping constructed by the model can be read from the set of winner hypoth-
eses. (In fact, the system maintains a ‘working answer’ throughout the whole run. 
It is often unnecessary to wait for the end.) The mechanisms for transfer should 
have been triggered at that time. They are not yet implemented in the current 
version of the model, however.  

It should be emphasized that everything described so far happens as a 
result of a dynamic emergent process. There is no central executive that controls 
the operation of the system. Instead, a multitude of micro-agents interact with 
their immediate neighbors and their local activities give rise to macroscopic 
phenomena that an external observer could interpret as analog access, 
mapping, etc. 
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CHAPTER IV 

KNOWLEDGE REPRESENTATION 
This chapter is devoted to knowledge representation in AMBR. It shows how 

the DUAL representation scheme (Kokinov, 1988, 1994a; Petrov 1997) is 
actually put to work in the model. 

4.1. Domain 

This section introduces the domain used for the simulation experiments 
reported in this thesis. It should be noted that AMBR mechanisms do not depend 
on this particular domain. It is simply a convenient testbed for the model. 

The domain involves simple everyday tasks in a kitchen. It deals with 
concepts such as water, high-temperature, baking-dish, and food. 
Typical situations include heating and cooling liquids, boiling eggs, etc. For 
example, the knowledge base contains the following episode: 

There is a teapot and some water in it. The teapot is made of 
metal and its color is black. There is also a hot-plate. The teapot is on 
the plate. The temperature of the plate is high.  

The goal is that the temperature of the water is high. 

The outcome of this arrangement is that the temperature of the 
teapot is high because it is on the hot plate. In turn, this causes the 
temperature of the water to be high. 

Equipped with episodes of this kind, AMBR is then presented with situations 
in which some of the objects necessary for achieving the goal are missing. For 
instance, the goal is to heat some milk in a teapot but no heating source is 
mentioned. Another kind of problem is to give all the objects in place and then 
ask what will happen, etc. 

We admit that these problems are very modest by human standards. AMBR 
does not attempt to solve the radiation problem or to understand the Rutherford 
atom. Indeed, its abilities are even more modest than suggested by the 
description above. Despite the appearance, AMBR has no idea about what ‘real 
world’ water actually looks like. It has so little ‘knowledge’ that in fact it works in a 
micro-domain and this should be taken into account when evaluating its 
performance (Chalmers, French & Hofstadter, 1992). We argue, however, that 
reliance on such micro-domains is methodologically correct and even unavoid-
able for the current state of the art. 
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4.2. Desiderata 

As simple as it is, AMBR’s domain reveals a number of requirements that the 
knowledge representation scheme must meet to allow successful problem 
solving. We believe that the same requirements hold for any domain and 
become increasingly important for more complex ones. 

4.2.1. Rich Descriptions of Episodes 

The episodes stored in the long-term memory should be described in 
enough detail. This is not crucial for the mapping process but is absolutely 
necessary for transfer and evaluation. In particular, the causal structure should be 
quite elaborated. In the example above, the hot plate is important for heating the 
water but the color of the teapot is not. Without enough causal information the 
model could assume that in order to heat milk it should put it in a black teapot.  

There is an additional complication — the rich representation of the source 
analog hinders its mapping to the target problem. The description of the latter is 
normally quite incomplete and, therefore, there are many elements in the source 
that do not have any counterpart in the target. Paradoxically, if there are two 
potential source analogs in the LTM, the one with sketchier description will map 
better to the target even though it may well be less useful for solving the problem. 
In the extreme case, a source analog that has absolutely nothing more than the 
target will achieve perfect match but zero utility. 

One way around this obstacle is to partition the source descriptions into 
initial conditions, goals, solutions, etc. The target problem could then be mapped 
selectively to the appropriate sections of the base (e.g. Holyoak & Thagard, 
1989). This approach, however, seems too rigid as it precludes any possibility of 
mapping elements from different compartments. Human problem solving does 
not  observe such boundaries. For instance, the goal of one situation could map 
to some unintended side effect in another. 

4.2.2. Semantic Knowledge 

Most analogy models either do not use semantic information at all 
(Falkenhainer, Forbus & Gentner, 1986; Keane & Brayshaw, 1988) or use it 
solely for estimating semantic similarity (Holyoak & Thagard, 1989; Kokinov, 
1994a; Hummel & Holyoak, 1997). It is clear, however, that human problem 
solving recruits much more semantic knowledge than that4. Even in our tiny 
domain the general fact that plates are heat sources and as such are used to 
heat things is of obvious importance when asking how to heat water. Still, such 
knowledge goes unused if the model deals exclusively with finding correspon-
dences between two episodes. 

                                                 
4 Moreover, research on memory suggests that remembering old episodes is often a matter of 

reconstruction rather than rote retrieval. 
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One challenge for the research community is to design mechanisms for 
using semantic knowledge in analogy-making. The skolemization mechanism 
proposed here is a first step in this direction. Note that one of the implications of 
this approach is that it blurs the boundary between deductive and analogical 
reasoning (which, according to our views, is quite fuzzy anyway). 

4.2.3. Flexibility and Re-Representation 

A third desideratum closely related to the first two is that episode represen-
tations should be flexible. Facts that follow from general rules need not be stored 
explicitly in each episode. They may be omitted from the representation and 
added again later upon necessity. The model should be able to switch between 
alternative representations such as hot(X) vs. temperature-of(X,high-
T) or left-of(X,Y)  vs. right-of(Y,X). 

There is a tacit assumption in analogy research about the asymmetry 
between source and target situations. It is quite often taken for granted that the 
target must conform to the source while the latter remains static. In our view the 
process of analogy-making consists of bringing both situations closer to each 
other by modifying either one when appropriate. In this way one and the same 
base episode can map to various targets and each mapping entails 
reconceptualization of the base. 

4.3. Representation of Concepts and Instances 
With full awareness that AMBR agents are nothing but ungrounded symbols 

(Harnad, 1990), we follow the common AI practice to use mnemonic names like 
milk, taste-of, and cause. Those names are irrelevant for the model itself; 
the program would work just as well (or as bad) had the agents been named 
ag001, ag002, etc.5 

As introduced in Chapter III, AMBR uses concept-agents to represent 
classes of entities in the micro-domain and instance-agents to represent 
individual instances. The taxonomy of classes is represented by subc and 
superc links between concept-agents. Each class may be linked to zero, one, 
or more super- or sub-classes, different links possibly having different weights. 
Similar links — inst-of and instance — relate instance-agents to concept-
agents. Figure 4.3.1. illustrates. 

Some instance-agents are temporary. They does not belong to the long-term 
memory of the system. They are constructed by some inference or (putative) 
perceptual mechanism and ‘live’ as long as they stay in the working memory 
(section 3.1.5). In the current version of AMBR, temporary instance-agents are 
used to represent the target situation and for Skolem instances. In contrast, 
permanent instance- agents are used for all LTM episodes. Concept-agents are 
always permanent. 

                                                 
5 Indeed, the first version of AMBR (Kokinov 1994a) used such void names. It was very 

instructive from a philosophical point of view as it laid bare how little ‘knowledge’ the 
program actually had. It was not very practical, however, because it hindered enormously 
the process of developing, tuning, and documenting the model. 
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liquid-holder: 
 :type (:concept :object) 
 :subc (container 1.0) 
 :superc ((teapot 0.3) 
    (bottle 0.3) 
    (cup    0.2) ) 
  :a-link (liquid 0.5) 
teapot: 
 :type (:concept :object) 
 :subc ((liquid-holder 0.8) 
    (kitchen-equipment 0.2) ) 
 :instance ((teapot-1 0.2) 
    (tpot-73  0.1) ) 
teapot-1: 
 :type (:instance :object) 
 :inst-of (teapot 1.0) 
agent007: 
 :type (:temporary :instance :object) 
 :inst-of (teapot 1.0) 

Figure 4.3.1. Example of concept-agents, instance-agents, 
and some of the links between them. Each micro-frame 
has additional slots (not shown in the figure). Note that 
each reference has a weight used for spreading activa-
tion. Compare with Fig. 3.2.2.2. 

‘Top-down’ links from concepts to instances deserve special attention. 
These instance links play a key role for analog access in AMBR. As discussed 
in earlier publications (Petrov, 1997, section 4.1.3), however, it is both 
psychologically implausible and computationally disadvantageous to maintain 
links to all instances of a given concept. Instead, there are such links to only 
some of them. This ‘privileged set’ varies as a function of time (though much 
more slowly compared to other events in the model). Thus, at any given moment 
each concept supports only a few of the vast number of instances potentially 
available in the episodic memory. 

The exact mechanisms for this are open for discussion and are not 
implemented in the current version of AMBR. The main idea is to give priority to 
recently used instances, prototypes, or other salient agents without excluding 
anyone a priory. At present, there is an implemented tool for generating (static) 
variants of the knowledge base. The simulation experiments reported in this 
thesis are based on hundreds of such variants of the same ‘core’ knowledge 
base. The set of instance links of each concept is generated by random 
sampling. The instance agents have unequal odds of including in the sample thus 
approximating the mechanism suggested above. 

Some instance-agents are distinguished by the tag :prototype  in their 
type slots. These prototype instances are used as arguments in the so-called 
general propositions (see below). 
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4.4. Representation of Propositions 

Individual AMBR agents are small and their micro-frames cannot represent 
much. Therefore, even relatively simple units of the representation such as 
propositions need be represented by a coalition of agents (section 3.1.4.). In the 
case of propositions, such coalitions are small and very tight. 

color-of 
 :type (:concept :relation) 
 :subc physprop-rel 
 :slot1 
   :subc  (physprop-rel . :slot1) 
   :c-coref  object 
 :slot2 
   :subc  (physprop-rel . :slot2) 
   :c-coref  color 

color-of-1 
 :type (:instance :relation) 
 :inst-of color-of 
 :slot1 
   :inst-of  (color-of . :slot1) 
   :c-coref  teapot-1 
 :slot2 
   :inst-of  (color-of . :slot2) 
    :c-coref  green-1 

teapot-1 
 :type (:instance :object) 
 :inst-of  teapot 
  :c-coref  (color-of-1 . :slot1) 
green-1 
 :type (:instance :object) 
 :inst-of  green 
  :c-coref  (color-of-1 . :slot2) 

Figure 4.4.1. A coalition of four micro -frames representing the 
proposition color-of-1(teapot-1, green-1). 
The corresponding node-and-link diagram is shown to the 
right. All connectionist aspects are omitted. 

There is an agent that represents the head of the proposition. In Figure 
4.4.1., this is the micro-agent color-of-1. It has the tags :instance and 
:relation in its type slot and is an instance of the concept color-of. The 
arguments of the relation are represented by S-slots in the heading micro-frame. 
Each S-slot has several facets (see subsection 3.1.3.1). 

The arguments (or roles) of the relation are bound to the actual entities 
involved in the particular instance of that relation by conceptual coreferences (or 
c-coref ’s for short). In Figure 4.4.1., the first S-slot of the micro-frame color-
of-1 has a facet labeled c-coref and this facet is filled by a reference to the 
agent teapot-1. In a nutshell, the existence of c-coref links between two 
micro-frames (or their slots) mean that the two frames represent two 
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complementary aspects of the same entity. In our example, these links represent 
the fact that teapot-1 and the first argument of color-of-1 are one and the 
same thing. Similarly, the second argument of the relation is bound to the 
particular shade of green that happens to be the color of teapot-1. 

Note that S-slot labels (slot1, slot2, etc.) in any proposition are 
absolutely arbitrary and by no means serve to define the arguments within the 
relation. In the example above, it is not crucial that slot1 is the object and 
slot2 the color. The slots in the instance-agent color-of-1 could just as well 
be labeled slot5 and slot6 (or even slot2 for the object and slot1 for the 
color). Moreover, two instances of the same relation could use entirely different 
labels. Each S-slot has a inst-of or subc facet that points to the 
corresponding slot in the parent concept. This gives distinct advantages over a 
positional notation (in which interpretation of arguments depends on their order 
in the proposition). AMBR propositions effectively have a set of arguments, not an 
ordered tuple. Thus it is possible that two slots in a ‘child’ inherit from the same 
slot in the ‘parent’, or that some parent slot is left unused, etc. As we shall see, 
this provides for great flexibility in analogical mapping. It is possible to map 
propositions with different number of arguments, to map two arguments from one 
proposition to a single argument in another, etc. 

The proposition illustrated in Figure 4.4.1. is a specific proposition — it 
relates two specific instance agents. Such propositions typically encode 
episodic information. In addition to them, AMBR’s knowledge base contains 
general propositions encoding semantic information. Their arguments are 
concepts or prototype instances. For example, the proposition shown in Figure 
4.4.2. represents the general fact that each snowdrop is white. The 
skolemization mechanism uses such general propositions to create specific 
Skolem propositions about particular exemplars of the general class (see 
section 5.7). 

each-snowdrop-is-white 
 :type (:instance :relation) 
 :inst-of color-of 
 :slot1 
   :SUBC     (color-of . :slot1) 
   :c-coref  snowdrop 
 :slot2 
   :INST-OF  (color-of . :slot2) 
    :c-coref  prototypical-snowdrop-white 
snowdrop 
 :type (:CONCEPT :object) 
 :subc flower 
  :c-coref  (each-snowdrop-is-white . :slot1) 
prototypical-snowdrop-white 
 :type (:PROTOTYPE :instance :object) 
 :inst-of  white 
  :c-coref  (each-snowdrop-is-white . :slot2) 

Figure 4.4.2. Example of a general proposition. Note the use of 
tags in the type slots and subc vs. inst-of facets. 
Compare with the specific proposition shown in Fig. 4.4.1 
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4.5. Representation of Situations 

This subsection compares two alternative strategies for representing 
situations (problems, episodes) for the purposes of analogy-making. It considers 
their advantages and disadvantages and presents the approach adopted in 
AMBR3. 

4.5.1. Centralized Representation: Pros and Cons 

We speak of centralized representation of a situation when there is an 
explicit data structure enumerating all elements  belonging to it. The data struc-
ture may be a list, frame, or something else. The criterion is whether the sys tem 
has a means to go through all members of the situation and only those members. 

Centralized representations simplify the mechanisms of the model. Each 
situation has distinct identity. It can be operated as a unit. It can be put in explicit 
competition with other situations. It can be checked for members with a given 
property, etc. 

These computational advantages explain the widespread use of centralized 
representations in analogy models. Thus, the MAC/FAC model (Forbus, Gentner 
& Law, 1994) maintains two data struc tures for each episode (memory item in 
original terms). Content vectors are used for cheap preliminary screening based 
on dot products. The SME analogical matcher (Falkenhainer, Forbus & Gentner, 
1986) then takes structured descriptions to produce a numerical score for each 
item that has passed the first stage. ACME (Holyoak & Thagard, 1989) and 
ARCS rely on predicate calculus descriptions to construct hypotheses for a 
constraint satisfaction network. The Incremental Analogy Machine (Keane & 
Brayshaw, 1988) starts with a predicate calculus description and looks for the 
group of predicates that have the most higher-order connectivity between its 
elements. It then picks up a seed from this seed group and goes to the 
description of the other situation searching for a seed match, etc. 

LISA (Hummel & Holyoak, 1997) is a very interesting case. It employs 
distributed representation of concepts, localist representation of propositions (P 
and SP units  in LISA terms), and centralized representation of situations (or 
analogs). Each situation can be in one of three modes: driver, recipient, or 
dormant. The propositions in the driver are selected to become active in the 
phase set one at a time according to a fixed schedule specified by the human 
user. Recipient and dormant propositions respond to the patterns generated by 
the driver. Only recipient units, however, participate in analogical mapping. Thus 
in order to enter the mapping, an analog from LTM must first switch from dormant 
to recipient mode. This transition occurs in a stop-and-go fashion — all 
members of the situation are simultaneously flipped from one mode into the 
other. In the current implementation of the model this is done by the human user 
(Hummel, personal communication, January 1998). 
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The first version of AMBR (Kokinov, 1994a) also used centralized represen-
tations of situations. There was a micro-frame standing for each situation as a 
whole. This micro-frame was called head and brought together all agents that 
built up the representation of the situation. There was one S-slot for each el-
ement — object or rela tion. The head was linked to all elements and some el-
ements were linked back to the head, thus creating a network like the one 
schematized in Figure 4.5.1. In addition to the ‘vertical’ links between the head 
and its elements, there were many ‘horizontal’ links between the elements 
themselves (not shown in the figure). 

 

Figure 4.5.1. Schematic outline of centralized representation 
of a situation as used in the first version of AMBR (Kokinov, 
1994a). There is one head connected to all elements of 
the situation. Cf. figure 4.5.2. 

This representational decision provided ready solutions to many issues 
faced by the model. It was clear who was ‘responsible’ for the situation. To begin 
working on a problem, for example, it was sufficient to put the head on the goal 
list. To decide which base analog ‘won’, it was sufficient to compare the 
activation levels of the heads. The task of mapping one problem to another was 
reduced to a task of establishing slot-to-slot correspondences between two 
micro-frames. After the correspondences had been found, it was clear which el-
ements of the source were unmapped and thus were potential candidates for 
transfer, etc. 

However, each of these advantages can be viewed as a disadvantage in the 
same time. From a psychological point of view, it is controversial whether each 
episode in the LTM has such distinct and clear-cut identity. To illustrate, it is 
comfortable to suppose that Hamlet and Westside Story are salient and well-
defined chunks for many people. It is acceptable to suppose that the radiation 
problem (Dunker, 1945)  is a sufficiently self-contained chunk for some 
psychologists and a few of their subjects (Gick & Holyoak, 1983). The problems 
used to test AMBR, however, deal with mundane episodes such as boiling a pot 
of water. Most of the situations fall into this final category and it is far from clear 
whether they are represented in such neat and orderly manner. This conjecture 
contradicts with the numerous cases of omission, intrusion, blend ing, inter-
ference, etc. in human memory recall. 

Second, centralized representations tend to be too static and inflexible as it 
is difficult to add or remove elements dynamically. They are also ‘flat’ in the 
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sense that all members participate on an equal footing. Special measures (e.g. 
differentiated link weights) are needed to make some elements more salient or 
pragmatically more important than others. Even in these cases, however, an item 
is either always in the situation or not at all. With bigger situations (cf. section 
4.2.1) this could lead to a mild version of the frame problem (McCarthy & Hayes, 
1969). 

In addition to these considerations which in our view should be taken into 
account by all cognitive models, there are other problems with centralized repre-
sentations that are particular to AMBR. The slots in the heading micro-frame 
become too many. Even the simple situations  used in the simulation 
experiments so far require at least a dozen S-slots in the head. For realistic situ-
ations this number would be in the order of one hundred. When the number of 
slots is that big, however, the frame problem appears again — it is necessary to 
specify which of the many elements are relevant to the task at hand. It also 
violates the architectural requirement that DUAL agents should have only a few 
slots. Worst of all, the fan-out effect makes the connectionist mechanism very 
inefficient. Even when the head is very active it fails to activate its children 
because the weight of each individual link is very small (due to normalization).  
When (and if) this finally happens, there comes another problem — the coalition 
becomes so stable that it never leaves the working memory because the 
reverberation is stronger than the decay. 

In response to these problems, the newer versions of AMBR (starting with 
AMBR2 (Petrov, 1997)) have abandoned the centralized representation used by 
their predecessor. The shift to decentralized representations poses problems in 
its own right but also offers a number of substantial improvements. 

4.5.2. Decentralized Representation: Pros and Cons 

We speak of decentralized representation of a situation when there is no 
explicit data structure enumerating all elements  belonging to it. This term should 
not be confused with the distributed representations prevalent in connectionist 
research. It is possible (like in AMBR) to have localist representation of individual 
elements and decentralized representation of situations. 

The main idea of decentralized representations is to represent the situation 
as a coalition of micro-frames without designating any of them as a center 
(Figure 4.5.2). It is possible, though not required, that some (salient) coalitions 
have a head, but even in these cases the head is primus inter parens. It is not 
special in any way and do not have access to all elements of the situation. 
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Figure 4.5.2. Schematic outline of decentralized representa-
tion of a situation. There are many interconnected agents, 
none of which is in privileged position with respect to the 
others. Compare with figure 4.5.1. 

With decentralized representations, the principal unit of analysis is the 
coalition (or meso-frame, see subsection 3.1.4). This is an emergent entity 
which allows for great flexibility. It is easy to add new elements as they need not 
be ‘registered’ anywhere. Thus, it would be easier to design a perceptual 
mechanism that incrementally builds such representations. As there are no fixed 
and predefined representation rules, each particular situation can be described 
in a way that is most suitable for it. Each micro-frame (including the head, if any) 
can have only a few slots and yet it is possible to represent big situations. 

Decentralized representations can be rich and detailed enough to support 
analogical transfer and evaluation. Thus they meet the criterion presented in 
section 4.2.1. In the same time, they can map successfully to impoverished and 
incomplete targets. This can be achieved when the mechanisms for access and 
mapping cooperate in the following way: The target problem acts as a driver and 
activates selected elements of several situations in the long-term memory. The 
full description of each of these potential source analogs can be very rich. At first, 
however, only a small fraction of the coali tion members enter the working 
memory. These are the elements that are semantically similar to the target and 
their immediate entourage. Thus the working memory contains descriptions of 
comparable complexity — the impoverished target and two or three partially 
activated sources. This commensurability is favorable for the mapping mechan-
isms and they start building correspondences. If a source analog matches the 
target well, its elements receive additional support and become more active. In 
turn, this gives them resources to bring more coalition partners into the working 
memory. The analog that has emerged as winner unfolds its rich representation. 
Now the working memory contains an impoverished target and an elaborate 
source. The task for the mapping mechanisms thus becomes more difficult but 
they are aided by the initial correspondences that have had time to stabilize. 
When most (but not necessarily all) target elements have found their counterparts 
the transfer and evaluation subprocesses could begin. They can rely on the rich 
representation of the source to create plausible inferences in the target. 

Of course, the advantages of decentralized representation come with a 
price: situations no longer have guaranteed and easily available identity. This is 
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good from psychological point of view, as it offers possibilities for modeling 
complex analogies, blends, etc. From computational point of view, however, 
decentralization of representations increases the complexity of the mechanisms 
that operate on them. Classical top-down algorithms must give way to a 
decentralized and emergent mode of processing. The individual elements have 
to take the initiative and do the job themselves instead of being passive data 
manipulated from outside. This poses difficult issues about synchronization, 
coherence, conflict resolution, resource allocation, etc. 

4.5.3. AMBR Situations in Detail 

We close this chapter with a brief description of the concrete representa-
tional scheme used in the current version of AMBR.  

As stated already, AMBR situations are represented as coalitions of agents. 
All situation elements are instance-agents, permanent or temporary (see sub-
section 3.2.2). Most of them represent the objects and propositions in the situ-
ation. There are, however, a few agents that stand for different states within the 
situation. States loosely bind several elements together and are useful for 
explicating the causal structure of the situation. For instance, there usually are an 
initial state, goal state, and end state. They are distinguished by tags in their 
modality slots — :init, :goal, or :result. The initial state is often 
divided into overlapping substates. 

States are instance-agents with S-slots that point to some of the members of 
the state. Thus they resemble propositions with arguments (cf. Figure 4.4.1). Not 
all agents that could be considered members of a particular state need be 
explicitly mentioned, however. An element could be listed in zero, one, or more 
states, including states of different types (e.g. :init and :goal). Each 
element may have one or more tags related to states. 

 In turn, states are themselves arguments to relations such as cause, 
follows , and prevents. If we turn back to the example from section 4.1., the 
situation presented there could have an initial state that lists the three objects 
involved: teapot-1, water-1, and hot-plate-1. Another state-like agent 
combines the propositions that the teapot is on the plate and the plate is hot. 
This state is a left-hand argument of a causal relation stating that under these 
circumstances the teapot is also hot, etc. 

Each situation in AMBR3 has a situation-agent associated with it. This is the 
most centralized aspect of current representations. Still, the situation agent is not 
equivalent to the head from previous versions. It bears very little representational 
content — it only materializes the spatio-temporal contiguity of the elements of 
the scene or episode. Situation agents are ordinary instance-agents. The sole 
peculiarity is the tag :situation in their type slot. 

Each individual member has a situation  slot filled by a reference to the 
situation agent. We say  that the instance is affiliated to the situation. The situ-
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ation agent itself, however, has at most associative links to a few members6. It is 
not possible to reach the members if given only the situation agent. It is possible, 
though, to determine whether two instances belong to the same situation. To that 
end, however, each element should enter the working memory on its own and 
‘claim membership’. This arrangement resembles the relationship between 
instance-agents and concepts. 

                                                 
6  These a-links are used in DUAL for spreading activation only. They are ignored by the 

symbolic aspect. 
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CHAPTER V 

AMBR MECHANISMS AT WORK 

5.1. Sample Problem 

This chapter presents a detailed description of AMBR mechanisms on the 
basis of a concrete example. The problem situation serving as basis for the 
presentation is taken from the domain outlined in section 4.1. It is about cooling 
milk in a teapot: 

Target problem (situation CM17): There is a teapot and some milk in it. 
The teapot is made of metal. 

The goal is that the temperature of the milk is low.  

teapot metal

low-T milk
T-of

made-of

in

Sit. CM1  

Figure 5.1.1. Schematic representation of the target situation 
described in the text. Objects are shown as boxes and 
propositions as arrows. Not all elements of the actual 
representation are present in the figure  

This situation is represented in the current knowledge base by eleven 
instance-agents. Seven of them are illustrated in Figure 5.1.1. The representa-
tion also contains agents for the init and goal states, etc. Note that no cooling 
object (such as a refrigerator) is included in the original description of the 
problem. 

In one of the many runs performed with the model, this problem happened to 
match to a long-term memory episode related to heating food in an oven (Figure 
5.1.2). This particular run will serve as an illustration of the various mechanisms 
of the model. 

                                                 
7 The current version of the knowledge base uses trigrams like CM1 and FDO as  situation 

names. CM1 stands for ‘cooling milk, variant 1’ and FDO for ‘food on a dish in an oven’. 
These trigrams appear in the transcripts listed in this chapter. 
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Base situation FDO: There is a baking dish and some food on it. The 
shape of the dish is rectangular. There is also an oven. The dish is in 
the oven. The temperature of the oven is high.  

The goal is that the temperature of the food is high. 

The outcome is that the temperature of the food is high. The fact 
that it is on the dish and the dish is in the oven entails that the food 
itself is in the oven.  In turn, this causes the food to be hot, as the oven 
is hot. 

dish

oven

rectang

high-T

food

T-of

shape-of

on

in

Sit. FDO

in

T-of

 

Figure 5.1.2. Schematic representation of the target situation 
described in the text. Objects are shown as boxes and 
propositions as arrows. The propositions  explicating the 
causal structure of the situation  are not shown. 

Note that this description is much more elaborated than that of the target. It 
contains 21 agents (not all shown in the figure). As discussed in section 4.2.1., it 
is typical that the source analog is much richer than the target. In particular, there 
are many agents representing the causal links. For example, it is represented 
that the propositions on(food, dish) and in(dish, oven) taken 
together are the cause for in(food, oven). 

5.2. Spreading Activation 

5.2.1. Purpose 

As stated earlier the spreading activation mechanism is of paramount 
importance in AMBR (and DUAL in general). It is responsible for computing 
dynamic estimates of the relevance of each particular memory item. It defines 
the working memory of the system by bringing some agents above a threshold 
while keeping irrelevant ones away. The formula from subsection 3.1.5. is so 
important that merits replication here: 

WM  =  active portion of LTM  +  temporary agents  
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Given that all information processing occurs in the working memory, 
spreading activation defines which agents take part in each particular computa-
tion. Moreover, it serves as energy supply to the symbolic aspect and thus 
determines the speed of each symbolic processor (subsection 3.1.3.3). 

At a more global level, spreading activation is the basis of the access sub-
process in analogy-making. It is responsible for accessing concepts and 
instances (and hence situations) that are relevant to the target. It also assures the 
relaxation of the constraint satisfaction network, which in turn is a key factor for 
the mapping subprocess. Various context and priming effects are also directly 
expressible in terms of that mechanism (Kokinov, 1988 1994a, 1995). 

5.2.2. Spreading Activation in AMBR  

The connectionist aspect is a general architectural feature of DUAL  (sub-
section 3.1.3.2). This section is devoted to the particular design used in AMBR.  

AMBR uses a modified version of the Grossberg activation function 
(Grossberg, 1978; Holyoak & Thagard, 1989). The function is chosen to meet 
the following requirements of the model: 

• Time is continuous. (Or, the length of one elementary connectionist cycle 
is negligibly small with respect to the macroscopic time scale.) 

• The activation level of any agent is bounded between zero and some 
fixed maximal value M. 

• All links in the long-term memory are excitatory8. 

• There is spontaneous decay that forces each node to loose activation 
according to an exponential law in the absence of external support. 

• There is a threshold θ that clips small activation levels to zero. 

If we neglect the threshold for the moment, the activation level a of any single 
node in the AMBR network is governed by the following differential equation: 

a(t0) = a0 

da
dt

 = F (a, n) = -d.a(t) + E.n(t).[M-a(t)]  , 

where a = a(t) is the activation level as a function of time, n = n(t) is the net 
input to the node, M = const is the maximal activation value, and d and E are 
parameters that control the rate of decay and excitation, respectively. See 
(Petrov, 1997) for a mathematical analysis of this equation and for the discrete 
approximation used in the implementation. 

                                                 
8 Therefore, it could also be said that AMBR uses a modified version of the function proposed 

by McClelland & Rumelhart (1981). The two func tions are equivalent for non-negative inputs. 
They differ, however, for the hypothesis agents in the constraint satisfaction network. 
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The function described above is the basis of the activation function of 
concept and instance agents in AMBR. (Hypothesis agents have a more 
complicated activation function described later.) There is one more com-
plication, however — there is a working memory threshold. Whenever the activa-
tion drops below some predefined minimal level θ, it is instantaneously brought 
to zero (and the agent is forced out of the working memory). Conversely, when 
the activation level of some node is zero and the magnitude of the net input n is 
bigger than some critical value nθ, the activation level of the node jumps 
instantaneously to the threshold level θ  and then proceeds in the usual manner. 
The critical value nθ is defined as the minimal support that an agent must receive 
from outside in order to resist the spontaneous decay and maintain activation at 
least at the threshold. 

5.2.3. Example 

This subsection shows how these abstract formulas apply to the  problem of 
cooling milk in a teapot. The processing starts with the attachment of some 
agents to the special activation sources in the model — the goal and input 
nodes (subsection 3.1.5). In the particular case, the human user of the system 
links the agents T-of-CM1 and low-T-CM1 to the goal node. A few of the 
other agents comprising the description of the problem (e.g. teapot-CM1 and 
metal-CM1) are attached to the input. These agents rapidly become very 
active and bring all their coali tion partners to the WM. Thus the target problem is 
presented to the system. (The external context could also be represented on the 
input node (Kokinov, 1994a). This is not done in the example discussed here.) 

Each instance agent from the target sends activation to its respective 
concept agent in the LTM. This allows them to enter the working memory and in 
turn activate related concepts and instances9. Transcript 5.2.3.1. illustrates this 
process. It is an excerpt from an actual AMBR run and tracks (roughly) the activa-
tion flow originating at milk-CM1 and tpot-CM1. 

T=0.04, adding milk to WM. 
T=0.04, adding teapot to WM. 
T=0.22, adding cook-vessel to WM. 
T=0.22, adding liquid-holder to WM. 
T=0.24, adding beverage to WM. 
T=0.24, adding dairy-product to WM. 
T=0.34, adding cheese to WM. 
T=0.40, adding container to WM. 
T=0.76, adding food-holder to WM. 
T=0.98, adding plate to WM. 
T=1.04, adding drinkable-liquid to WM. 
T=1.06, adding liquid to WM. 
T=1.08, adding food to WM. 
T=1.42, adding cup to WM. 
T=1.64, adding cow to WM. 
T=1.84, adding baking-dish to WM. 

                                                 
9  The example discussed here starts with zero activation of all long-term memory agents. 

This, however, need not be the case. Kokinov (1994a) has modeled priming effects by 
starting from some residual activation pattern. 
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T=2.20, adding saucepan to WM. 
T=2.50, adding bottle to WM. 
T=2.68, adding non-drinkable-liquid to WM. 
T=4.70, adding glass to WM. 
T=5.80, adding soft-drink to WM. 
T=5.80, adding alcoholic-drink to WM. 
T=6.15, adding pan to WM. 
T=7.85, adding water to WM. 
T=8.25, adding ice to WM. 
... 

Transcript 5.2.3.1. Excerpt of an AMBR session showing the process 
of bringing concept-agents to the working memory. See text for 
details. 

As evident from the transcript, activation propagates ‘upward’ in the class 
hierarchy, e.g. milk-CM1 -> milk -> dairy-product -> food. It also 
spreads ‘horizontally’ to concepts at the same level of abstraction, e.g. milk -> 
cheese (directly or via dairy-product). Some concepts that are 
associatively related to the active ones are also brought to the WM, e.g. cow . 
Sooner or later, however, the spread of activation is limited by the decay factor 
and new concept agents cannot pass the threshold. The number of active 
concept agents stabilizes, though individual agents occasionally get in or out the 
WM. 

Recall from section 4.3. that there are top-down instance links from the 
concept agents to some of their instances in the LTM. These links mediate acti-
vation from the semantic to the episodic memory and initiate the access of 
source analogs. Transcript 5.2.3.2. shows the instances that happened to be 
activated by the concepts of the previous transcript. 

T=0.34, adding milk-MTF to WM. 
T=0.42, adding tpot-WTP to WM. 
T=1.28, adding food-SFF to WM. 
T=1.40, adding cup-IHC to WM. 
T=1.80, adding dish-FDO to WM. 
T=2.34, adding tpot-ERW to WM. 
T=2.86, adding food-FDO to WM. 
T=7.80, adding water-WTP to WM. 
... 

Transcript 5.2.3.2. Excerpt of an AMBR session showing the process 
of bringing instance-agents to the working memory. Compare with 
Transcript 5.2.3.1. 

Note that initially there are isolated instances from disparate situations. The 
reason for their early inclusion in the working memory is their semantic similarity 
to the elements of the driver. As these instances participate in coalitions, 
however, they bring their partners to the WM too. Thus, retrieval of episodes is a 
bottom-up process in AMBR. Note that there is no need for any centralized data 
structure. This is in contrast to other models (e.g. Thagard et al., 1990; Forbus et 
al., 1994a) which treat analog retrieval as an explicit competition at the level of 
whole situations. 
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The spreading activation mechanism is influenced by the other mechanisms 
in the model. These influences are mediated by changes in the topology of the 
network. Many new agents and new links are added by various mechanisms. 
This greatly affects the flow of activation and contributes to the dynamic and 
emergent nature of AMBR computation. To illustrate, consider the activation 
history  of one particular instance agent (food-FDO) shown in Figure 5.2.3. 

0 50 100 150 200

1

2

 

Figure 5.2.3. Activation history of the instance agent food-
FDO . Time varies across the X-axis, activation level 
across the Y-axis. See text for details. 

As we shall see later, food-FDO maps to the target instance of milk in our 
example. Thus the plot shows the gradual increase of the activation of a 
‘successful’ agent. Note in particular the sharp bend at time 160. It is due to an 
influence by the rating mechanism (section 5.6). At that moment, the rating mech-
anism makes a commitment that milk-CM1 corresponds to food-FDO and 
creates a temporary link between the two. In this way the highly active target 
element (attached to the input node) gives additional strong support to its 
counterpart. 

5.2.4. A Prediction of the Model 

In the example from the previous section all target elements are attached to 
the input and goal nodes simultaneously. This, however, need not be the case. 
On the contrary, it is more reasonable to expect that the elements are attached 
sequentially, in the order they become available to the system. 

For example, suppose a student reads the verbal description of some 
problem from a textbook. The text is read sequentially and the internalized repre-
sentation of this text would tend to be constructed sequentially too. In the AMBR 
model, this process could be crudely approximated by attaching the temporary 
agents that represent the target sequentially to the input node. In a more 
elaborated model, these elements will be constructed by the perceptual mechan-
isms. Similar considerations hold for the order of attachment to the goal node. 

When some target elements are attached earlier than others, they will acti-
vate their respective concept agents earlier. This entails that the pattern of acti-
vation in the whole network shifts towards the association field of the early target 
elements. They have advantage over the elements that are attached to the 
source nodes later. Moreover, earlier elements tend to establish hypotheses 
earlier, which in turn reinforces their advantage. The net result of this process is 
that the order of presentation will have an effect on the processes of analog 
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access and mapping. This is one prediction of AMBR that could be tested experi-
mentally. 

The order effect predicted here is similar to the one demonstrated by 
Keane, Ledgeway, and Duff (1994). There is a difference, however. The 
attribute-matching task used in their experiment did not involve access of a 
source analog from memory. The subjects were given two lists of propositions 
and asked to find a correspondence between them. The results of the experi-
ment suggested that the order of propositions in the list affect subjects’ latency to 
find the correct mapping. We predict that similar order effects could be 
demonstrated with respect to the process of analog access as well. Specifically, 
the order will affect the frequency of accessing episodes from memory. 
Episodes containing elements which are semantically similar to a given target 
element will be retrieved more frequently when this target element is presented 
earlier to the subjects. Section 6.4. presents a simulation experiment with AMBR 
that demonstrates such effect. A psychological experiment addressing the same 
topic is currently being prepared. 

5.3. Marker Passing 

As introduced in section 3.2.3.2., the marker passing (MP) mechanism is a 
tool for answering the question, “Given two nodes in the network, is there a path 
between them?”. It is the symbolic counterpart of the spreading activation. 
Markers are emitted by certain nodes of origin and then propagate the network 
looking for a marker intersection. Figure 5.3.1. illustrates the variant of this 
general mechanism that is used in AMBR.  

Each instance-agent in AMBR emits a marker when entering the WM. It 
sends it to its parent concept via the inst-of link. The concept agent stores 
the marker in its local buffer and in turn passes it further to its superordinate 
concept(s) via the subc link(s). Thus markers propagate ‘upward’ in the class 
hierarchy. Therefore, the presence of a marker in some concept indicates that 
the instance of origin belongs (directly or by inheritance) to that concept. For 
example, drinkable-liquid  at Figure 5.3.1. collects markers from three 
instance-agents — milk-CM1, milk-MTF, and water-WTP. This information 
can then be used for inheritance of properties, for skolemization purposes, etc. 
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milk-CM1 milk-MTFfood-FDO water-WTP
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Figure 5.3.1. Illustration of the marker passing mechanism. 
The boxes at the bottom represent instance agents from 
different situations. All others stand for concept agents. 
See text for details. 

The culmination of the marker passing mechanism, however, happens when 
two complementary10 markers meet at some concept agent. This intersection 
indicates that the two instances are semantically similar as they belong to the 
same (super)class. The activation level of the intersection node can be used as 
a numerical estimate of the degree of similarity in the particular context (Kokinov, 
1992b, 1994c). 

Marker intersections have another important function in AMBR. They trigger 
the construction of semantically grounded hypotheses and thus initiate the con-
straint satisfaction mechanism. More concretely, when a concept agent detects 
an intersection it formulates a node construction request describing the new hy-
pothesis-agent that is to be made. It then sends the request to one of the 
specialized node constructors which are the only agents in the architecture 
capable of making a new agent. The node constructor carries out the request 
and constructs a temporary agent of the prescribed kind. In the particular case, it 
will be an embryo hypothesis (cf. section 5.4) involving the two marker origins. 
The concept agent that has detected the intersection becomes the justification of 
the new hypothesis. In the example above, three such hypotheses are created: 
milk-CM1<-->milk-MTF justified by milk, milk-CM1<-->water-WTP 
justified by drinkable-liquid, and milk-CM1<-->food-FDO justified by 
food. 

One of the biggest issues in marker-passing systems is the attenuation of 
the marking. Without such attenuation there would be too many marker inter-
sections, most of which are useless and overwhelm the few useful ones. Different 

                                                 
10  Complementary markers have different origins and complementary colors. 
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systems use different attenuation strategies (see Hendler (1988) for an over-
view). Thus Quillian (1966) limits the number of links that a marker can traverse. 
Charniak (1983) checks the outbranching factor and prevents ‘promiscuous’ 
nodes from sending markers. Hendler (1988, 1989) uses an energy-like quantity 
called zorch, etc. In AMBR there is no need for a specialized mechanism for 
attenuation of markers as it follows naturally from the archi tectural principles of 
DUAL and the design of AMBR. Specifically, the spread of markers in the model 
is restricted by the following factors: 

• Markers originate only from instance-agents. The concepts do not create 
new markers; they only pass the existing ones. 

• Makers propagate only along links with certain labels (inst-of, subc, 
and c-coref). 

• When there is a marker intersection the markers stop and do not 
propagate further. 

• Only active agents can receive and send markers. Thus the spread of 
markers is limited by the boundaries of the working memory as determined by 
the spreading activation mechanism. 

• Marker passing, as any other symbolic activity in the archi tecture, takes 
time and thus depends on the speed of the symbolic processor of the agent 
receiving and handling the marker. As a consequence, markers move very slowly 
in the ‘peripheral’ regions of the working memory where activation levels are low. 

• Reporting marker intersection depends on a limited resource. There are 
only a few node constructors in the archi tecture and each concept agent must 
recruit one in order to create new hypotheses. When all constructors are busy the 
agent must wait until some of them becomes available. Thus there is an implicit 
competition in which the more active agents have advantage. 

The net result of all these factors is that marker intersections are reported in 
a temporal order reflecting their potential usefulness for the particular task in the 
particular context. It is important to stress that this global marker passing is a 
dynamic emergent process. A whole coalition of DUAL agents is needed to 
cooperatively produce the final result. Each individual agent can do local MP 
only — instances know to create markers and concepts know to store and 
compare them. The overall result, however, is determined by a multitude of 
factors each of which has relatively minor impact on its own. Moreover, the 
relative strength of these factors vary dynamically in response to various external 
or internal events. Therefore, it is impossible to predict what marker intersections 
will happen in the particular case, when they will construct hypotheses, etc. Yet 
the process exhibits certain emergent regularities: more active (i.e. more 
relevant) areas of the network report more and faster marker intersections. 
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5.4. Constraint Satisfaction 

5.4.1. Main Points  

The multiconstraint theory (Holyoak & Thagard 1989, 1995) treats analogy-
making in the light of three constraints: structural, semantic, and pragmatic. 
AMBR adopts this general idea. Like ACME, it uses a parallel connectionist 
algorithm for solving the constraint-satisfaction problem. This does not mean, 
however, that AMBR is a simple replication of ACME. There are a number of dif-
ferences: 

1. The constraint satisfaction network (CSN) is constructed incrementally by 
an emergent process. Hypotheses are created locally and are incorporated 
dynamically and asynchronously. 

2. The CSN is integrated with the main network. This eliminates the need for 
special nodes mediating the semantic and pragmatic influences. This is 
responsibility of instance and concept agents themselves. Moreover, the 
hypotheses in the CSN send activation back to the agents in the main network. 
As discussed later, this is very important for the integration of analogical access 
and mapping. 

3. Instead of covering all possible element pairs, AMBR builds only justified 
hypotheses. In addition to being much more economical, this eliminates the need 
for centralized representation of situations. 

4. Several source situations compete in the CSN simultaneously thus 
allowing for complex analogies and blends when appropriate. Each situation is 
only partially accessed, however, and participates with its active elements. 

5. It is possible to map relations with different number of arguments, to map 
two arguments from one side to a single one from the other, etc. 

6. The network is not waited to settle in order to read out the ‘solution’ from 
the activation pattern. Instead, the CSN is in constant relaxation as the topology 
of the network changes. There is a rating mechanism that promotes winners and 
eliminates losers dynamically. 

7. Each hypothesis agent undergoes an elaborate life cycle. The CSN 
involves hypotheses of different kinds. 

8. There are hypotheses involving general propositions from the semantic 
memory (subsection 4.4). 

The first two points are by far the most important. Previous constraint 
satisfaction models, and in particular ACME (Holyoak & Thagard, 1989) and 
ARCS (Thagard et al., 1990), work in successive stages. First, a source analog 
is retrieved from long-term memory or supplied manually by the experimenter. 
Second, the constraint satisfaction network is constructed by a sequential 
symbolic process. Finally, the CSN is waited to settle, thus identifying a coherent 
set of correspondences. This three-step process is illustrated in Figure 5.4.1.1. 
The stages are carried out by different and independent mechanisms. 
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Figure 5.4.1.1. Constraint satisfaction as a three-stage 
process. The stages come one after the other and cannot 
interact. Compare with Figure 3.2.1.1. 

In contrast, AMBR (Kokinov, 1994a) views constraint satisfaction as a single 
integrated process that has three interacting subprocesses. They all run 
together, each one influencing the rest (Figure 5.4.1.2). This is very much in the 
overall spirit of the model — compare with Figure 3.2.1.2. The whole 
computation is performed in an integrated fashion: the same representational 
structures and computational mechanisms  are used for all three subprocesses. 

Analog access

CSN construction

CSN relaxation
 

Figure 5.4.1.2. Constraint satisfaction as a set of interacting 
subprocesses. Compare with Figure 3.2.1.2. 

This computational scheme has several important advantages: 

• It allows for integration of the more global processes of access and 
mapping in analogy-making. 

• The subprocess that builds the CSN can be guided by the associative 
mechanism to avoid blind construction of implausible hypotheses. In this way, 
AMBR builds only a small fraction of the hypotheses generated by ACME. This 
decreases the working-memory demands — a weakness of ACME that has 
been criticized by many researchers including its authors themselves (Keane et 
al., 1994; Kokinov, 1994a; French, 1995; Hummel & Holyoak, 1997). 

• In the same time, AMBR retains the flexibility implied by the all-
encompassing network used in ACME. AMBR does not construct all hypotheses, 
it constructs only relevant ones. And since relevance is dynamically determined, 
no possibilities are ignored a priory. This benefit is a direct consequence of the 
dynamic emergent computation that underlies AMBR’s constraint satisfaction. 

5.4.2. Hypothesis Agents 

This subsection is devoted to the main actors in the constraint satisfaction 
network. From declarative point of view, hypothesis-agents carry four main 
pieces of information, each stored in a specific slot. The first two slots contain 
the two entities being mapped. They are called hypothesis elements. The 
hypothesis agent as a whole represents the hypothesis that the first element 
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(from the driver situation) corresponds to the second element (from a recipient 
situation). There are also hypotheses involving concept agents. 

The third slot of a hypothesis-agent contains its justification(s). The 
justification of a hypothesis is the reason for which it has been created  and is 
being maintained by the system. For example, one possible justification of the 
hypothesis that milk-CM1 corresponds to water-WTP is that both are 
drinkable liquids. 

There are two kinds of justifications: semantic and structural. A  hypothesis 
has semantic justification when its two elements are semantically similar. Such 
justifications are established by the marker-passing mechanism. In most cases 
the two elements belong to close or even identical classes. On some occasions, 
however, AMBR can construct hypotheses between almost any two entities. This 
happens when the domains of the two situations being mapped are very remote 
and hence the markers can intersect only at some very abstract node such as 
object, relation, etc. In this way for example, tumor could be mapped to 
fortress. Such occasions are rare  — usually the markers intersect earlier. 

The second kind of justifications are the structural ones. A given hypothesis 
can have such justification when there is another hypothesis which interlocks with 
the first. For example, the hypothesis that two relations correspond justifies the 
hypotheses that the arguments of these relations also correspond. Structural 
justifications are established by the structure correspondence mechanism 
(section 5.5.). 

Semantic justifications are always represented by concept-agents; structural 
justifications — by hypothesis-agents. It is possible (and frequent) that a 
hypothesis has several justifications. For instance, the hypothesis milk-CM1<-
->water-WTP could be justified by drinkable-liquid (semantic) and by 
temperature-of-CM1<-->temperature-of-WTP (structural). In AMBR 
this particular hypothesis will be represented as schematized in Figure 5.4.2.1. 

The fourth piece of information maintained by each hypothesis agent is a 
reference to the situation agent of the driver situation. In AMBR it is theoretically 
possible that two or more target problems are attached simultaneously to the 
goal node. Each of them initiates its own set of hypotheses. The fourth slot 
prevents mixing hypotheses from different sets. It is also useful for the other 
mechanisms of the model. 

Figure 4.3.3.3. shows only the symbolic aspect of the hypothesis. In addition, 
there is a connectionist aspect (as always in DUAL). All references to other 
agents are also by which the hypothesis participates in the process of spreading 
activation. It supports its elements and in turn is supported by them. There are 
also excitatory links to the justi fication(s) and the driver situation. 
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milk-CM1<-->water-WTP: 
 :type (:mature :hypothesis :temporary) 
 :t-link   ((milk-CM1<-->food-FDO -0.3) 
    (milk<==>water        +0.3) 
    (sit-CM1<==>sit-WTP   +0.3) ) 
 :slot1 
   :c-coref  milk-CM1 
 :slot2 
   :c-coref  water-WTP 
 :slot3 
   :c-coref ((drinkable-liquid 
     (temperature-of-CM1<-->T-of-WTP) ) 
  :slot4 
   :c-coref sit-CM1 

Figure 5.4.2.1. Example of a hypothesis-agent. It represents 
the hypothesis that milk-CM1  corresponds to water-
WTP. There are two justifications for this correspondence. 
Its driver situation is sit-CM1. Not all link weights are 
shown in the figure. 

Finally, there are temporary links (t-links) that connect the hypothesis 
with other hypotheses. These links may be excitatory (for coherent hypotheses) 
or inhibitory (for conflicting hypotheses). They are invisible to the symbolic aspect 
of the archi tecture but are very important for the relaxation of the constraint satis-
faction network. 

Temporary links with negative weights deserve special comment. They 
embody the one-to-one constraint in analogical mapping. This constraint pushes 
the CSN towards a solution in which an element X from situation 1 is mapped to 
at most one element from situation 2. There is a strong pressure that the same 
element X should not be mapped to two or more elements, e.g., Y and Z. Thus, 
the hypotheses X<-->Y and X<-->Z are contradictory and should be 
connected with inhibitory links. 

A problem arises at this point. The constraint-satisfaction network in AMBR is 
built by an emergent process. There is no central executive that goes through all 
hypotheses, identifies conflicting ones and puts inhibitory links between them. 
Rather, hypotheses are constructed one by one and the creator of each 
hypothesis has local information only. Under such circumstances, how does the 
hypothesis X<-->Y ‘know’ that there is a rival hypothesis (e.g. X<-->Z) to 
compete with? 

The answer to this question is: The hypothesis will ‘ask’ the secretary of X. 

5.4.3. Secretaries 

Each entity-agent has a secretary associated with it. The secretary is not a 
separate agent; it is part of the entity-agent itself. The term secretary is used 
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conventionally to refer to that particular part of a concept or instance agent that 
keeps track of the correspondences involving the agent. 

The job of a secretary is twofold: it handles hypothesis-registration requests 
and carries out the rating mechanism. To that end, each secretary (i.e. instance 
or concept agent) is equipped with a slot and a few symbolic routines. The slot is 
labeled hypoth  and is filled with references to all hypothesis-agents having the 
entity-agent as element. The same references are used as links that transmit ac-
tivation from the agent (e.g. milk-CM1) to its hypotheses (e.g. milk-CM1<--
>water-WTP and milk-CM1<-->food-FDO). 

One of the first things that a hypothesis agent does after its creation is to 
send hypothesis-registration requests to the respective secretaries. Hypothesis-
registration requests (or HR-requests for short) are symbolic structures notifying 
the secretary about the new hypothesis. Each of the two secretaries receives a 
request and sends a secretary answer back to the hypothesis. There are several 
kinds of answers but basically all of them could be aggregated into the following 
two major types: 

• ‘Resign’ — this answer means that the new hypothesis agent represents 
a tentative correspondence that already is represented by another hypothesis-
agent. In other words, the new hypothesis is a duplicate of an older one. Such 
duplicate hypotheses are created because there usually are several justifications 
for a given correspondence. For example, the marker-passing mechanism could 
construct the hypothesis milk-CM1<-->water-WTP on the grounds that both 
are drinkable liquids. Later on, the structure correspondence mechanism could 
independently construct the same hypothesis on the grounds that milk-CM1 
and water-WTP are corresponding arguments in corresponding relations. This 
second hypothesis is conceptually identical with the first but will be represented 
by a different agent. Let us suppose (as is actually implemented in the program) 
that the name of the second hypothesis agent is milk-CM1<-1->water-
WTP. When it tries to register at the secretary of milk-CM1, the latter will reply 
with an answer of type ‘Resign’. 

• ‘Establish’ — this answer means that the hypothesis agent represents a 
novel hypothesis that does not coincide with any existing one. In the example 
above, the first hypothesis (milk-CM1<-->water-WTP) would receive such 
answer to its HR-request. 

Secretary answers carry more information than the simple resign/establish 
distinction. Answers of type ‘Resign’ carry a reference to the favorite — the 
hypothesis in favor of whom to resign. Answers of type ‘Establish’ carry a 
(possibly empty) list of references to rival hypotheses. 

5.4.4. Life Cycle of Hypothesis -Agents 

Hypothesis-agents analyze the answers from the secretaries and act 
according to their directives. Due to the possibility of answers of type ‘Resign’, a 
new hypothesis is not guaranteed from the beginning that it has raison d’etre. It 
may be a duplicate of an existing hypothesis. If it manages to establish itself, 
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there comes another struggle — it tries to win the competition with rival hypoth-
eses. 

AMBR distinguishes three main types of hypothesis-agents: embryos,  
mature , and winner hypotheses. They are marked by a tag in the type slot. 
More importantly, they differ in their activation functions and the repertoire 
available to their symbolic processors. 

 Each hypothesis-agent starts its life cycle as an embryo. Later on, it either 
resigns in favor of some other hypothesis or establishes and becomes mature. 
Mature hypotheses have the chance of being promoted to winner status (or 
demoted to loser status). In more detail, the life cycle is the following: 

The main rule for hypothesis construction in AMBR is that each hypothesis 
must have a justification. As stated earlier, there are two possibilities for 
construction of a hypothesis-agent: by the marker passing and by the structure 
correspondence mechanism. Either way, the new embryo hypothesis is created 
(by a node constructor) and begins its life cycle. It sends hypothesis registration 
requests to the secretaries of its two elements and waits for the answers. 
Usually, the two answers are the same — either both are ‘Establish’ or both are 
‘Resign’. The embryo takes corresponding actions respectively. Sometimes the 
secretaries disagree in their answers. This is possible due to the asynchronous 
and parallel nature of DUAL interactions. Embryo hypotheses are equipped with 
procedural knowledge for resolving the ambiguities. 

When it turns out that the new embryo hypothesis is a duplicate of an existing 
hypothesis (called favorite ), the former resigns in favor of the latter. The resigning 
hypothesis hands over to the favorite all its declarative knowledge and in 
particular its justification. Having done that, it fizzles out. In the end, there is one 
hypothesis agent with two justifications instead of two separate hypotheses with 
one justification each. This is the mechanism that allows for multiple justifications 
of AMBR hypotheses despite that initially each has only one. 

If the analysis of secretary information reveals that the embryo hypothesis 
represents a novel correspondence between two elements, the embryo 
establishes itself and becomes a mature hypothesis. From now on, its main 
goals are to win the competition with alternative hypotheses and to sprout out 
children. 

The first goal is pursued by creating inhibitory links with the rivals. (The 
hypothesis receives a list of its rivals as an ‘enclosure’ to the secretary answers.) 
For fair play, the new agent sends its reference to all competing hypothesis, 
prompting them to establish symmetric inhibitory links. 

The third phase of the life cycle of hypothesis agents begins when (and if) 
the hypothesis receives a promotion incentive from an authorized secretary. 
This topic is discussed in section 5.6. 
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5.4.5. The Constraint-Satisfaction Network 

The mechanisms described so far gradually build many hypothesis-agents 
and establish connections between them. In this way, a constraint satisfaction 
network emerges. The CSN is a formation of agents that cooperatively solve a 
constraint satisfaction problem. It is integrated with the main network. Thus, they 
become complementary parts of the big population of agents that comprise the 
model as a whole. 

The CSN involves the following kinds of links: 

1. LTM—>CSN: Links from instance and concept agents to the respective 
hypothesis agents. These links are excitatory and are stored in hypoth  slots of 
entity agents. 

2. LTM—>CSN: Links from concept agents (e.g.drinkable-liquid) to 
the hypotheses justified by them (if any). These links are exc itatory and are 
stored in t-link slots of concept agents. 

3. CSN—>LTM: Links from hypotheses to their elements, semantic 
justifications, and driver situations. These links are excitatory and are stored in 
S-slots of hypothesis agents. 

4. CSN—>CSN: Links from a hypothesis to its structure correspondence 
children (if any). These links are excitatory and are stored in t-link slots. 

5. CSN—>CSN: Links from a hypothesis to its structural jus tifications (if 
any). These links are excitatory and are stored in S-slots. 

6. CSN—>CSN: Links between competing hypotheses. These links are 
symmetric, have negative weights, and are stored in t-link slots of hypothesis 
agents. 

The constraint satisfaction network thus embodies the three constraints 
posited by the multiconstraint theory.  The structural constraint is manifested in 
categories 4, 5, and 6 above. The semantic constraint appears in category 2, 
and the pragmatic one — in categories 1 and 2. Note that besides the links 
discussed here, AMBR has additional mechanisms for enforcing the constraints. 

The links from the CSN to the rest of the network (category 3) deserve 
special attention. Through these links, the constraint satisfaction mechanism 
influences the pattern of activation in the main network and hence everything in 
the archi tecture. This fact has important implications for the integration between 
analogical access and mapping. 

Hypothesis activation function. Hypothesis-agents are special in that 
they receive not only excitatory but also inhibitory input from their neighbors. They 
have two separate input zones — enet and inet. The two connectionist inputs are 
combined with the current activation level of the agent to determine the change of 
activation. The change of activation is governed by a continuous modification of 
Grossberg’s activation rule. (Compare with the equation from subsection 5.2.2.) 
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In the original version of Grossberg’s function (Grossberg, 1978), the activa-
tion can take both positive and negative values. The specification of DUAL, 
however, postulates that all agents in the archi tecture must have non-negative 
activation functions. Therefore, AMBR uses a linear transformation of hypothesis’ 
activation. The neutral point of the function (i.e. the resting level for zero input) is 
placed above the working memory threshold. The most negative branch of the 
function is truncated by the threshold. In this way the most pronounced losers are 
eliminated automatically — they simply fall out the WM and die (recall that all hy-
potheses are temporary agents). The upper part of the negative branch, 
however, is situated above the threshold. Thus the hypotheses that are judged 
implausible but not absolutely weird have a chance to survive. 

Hypothesis output function. Hypothesis-agents are also characterized by 
a specific output function. Moreover, it is different for embryo hypotheses and 
mature hypotheses. Embryo hypotheses do not influence their neighbors at all. 
(In other words, their output function is the constant zero.) The reason for this 
decision is that the embryos are do not really participate in the CSN yet. If they 
maturate, however,  their output function changes. Mature hypotheses have a 
threshold output function so that only hypotheses whose activation is above the 
neutral level can influence their neighbors. 

5.4.6. Example 

As an example of the mechanisms discussed so far, and in preparation for 
the structure correspondence mechanism that comes next, this section provides 
a transcript showing the construction of one particular embryo hypothesis — 
milk-CM1<-->milk-MTF. The example illustrates construction of a 
hypothesis by the marker-passing mechanism, followed by secretary inquiries. 
The concept milk detects a marker intersection at time 1.72 and sends a node 
construction request to the special agent *NC6*. It constructs an embryo hypoth-
esis at time 2.84. After registering at its two secretaries the hypothesis matu-
rates at time 4.98. 

T=0.16, #<MRK MILK-CM1> received in MILK. 
T=1.64, #<MRK MILK-MTF> received in MILK. 
T=1.72, #<MRK MILK-CM1> and #<MRK MILK-MTF> intersected at MILK. 
T=2.12, #<NCR MILK> received in *NC6*. 
T=2.84, creating a new agent: MILK-CM1<-->MILK-MTF 
T=3.72, #<HR MILK-CM1<-->MILK-MTF> received in MILK-CM1. 
T=3.82, #<SA+ nil> received in MILK-CM1<-->MILK-MTF. 
T=3.84, #<HR MILK-CM1<-->MILK-MTF> received in MILK-MTF. 
T=4.96, #<SA+ nil> received in MILK-CM1<-->MILK-MTF. 
T=4.98, establishing hypothesis MILK-CM1<-->MILK-MTF. 

Transcript 5.4.6. Excerpt of an AMBR session showing the construc-
tion and establishment of a hypothesis. #<MRK xxx>  is a marker 
originated at the instance agent with the given name,  #<NCR xxx> 
is a node construction request, #<HR xxx> is a hypothesis 
registration request, and #<SA+ nil> is a secretary answer of type 
‘Establish’. 
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5.5. Structure Correspondence 

The structure-correspondence (SC) mechanism generates new hypotheses 
on the basis of existing hypotheses. It is carried out by mature hypothesis-
agents. Their symbolic processors are equipped with routines specialized for the 
task. 

There are two major types of SC, conventionally termed bottom-up SC  and 
top-down SC. Both come in strong and weak variants. 

5.5.1. Bottom-up Structure Correspondence 

Bottom-up SC takes place when there is a hypothesis involving two 
instance-agents. More precisely, it happens when there is a mature hypothesis 
whose elements have the tag :instance in their type slots. Under these 
circumstances, the symbolic processor of the hypothesis tracks the inst-of 
links of the two instances and retrieves their respective concepts. For example, if 
the two instances are milk-CM1 and water-WTP, the concept agents will be 
milk and water. Then, the original hypothesis initiates a process for 
constructing a supplementary hypothesis stating a parallel correspondence be-
tween the two concepts. The new embryo is constructed in the usual way — by 
formulating and sending a node construction request. The original hypothesis 
becomes the justification of the new one. 

It frequently happens that the new hypothesis is not really new — the same 
concepts have been already put into correspondence by an earlier invocation of 
the structure-correspondence mechanism. For example, the hypothesis milk-
CM1<-->water-WTP generates the concept-level hypothesis milk<--
>water. After a while, another hypothesis, e.g. milk-CM1<-->water-FDO 
constructs another instantiation of the same concept-level hypothesis. In such 
cases, the duplication is detected by the secretaries and the second hypothesis 
resigns in favor of the first. Eventually, milk<-->water will have two 
justifications and there will be appropriate excitatory links. The net result of this 
process is that the overall degree of connectivity in the CSN is enhanced. 

The mechanism of bottom-up SC creates a pressure that correspondences 
at the instance level should be coherent with correspondences at the concept 
level. Stated differently, the mapping of two instances facilitates mapping of the 
classes to which they belong and vice versa. 

The bottom-up SC also creates hypotheses involving the situation-agents to 
which the instances are affiliated. Recall that AMBR maps the target situation to 
several different bases simultaneously. The bottom-up SC creates hypotheses of 
the form sit-CM1<-->sit-WTP and sit-CM1<-->sit-FDO. The 
existence of such hypotheses in the CSN creates a pressure that situations are 
mapped as units. Blends are possible but they happen only when truly warranted. 
Normally the model tries to keep the mapping within the scope of two situations 
only: the target and a single base. 
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5.5.2. Top-down Structure Correspondence 

Top-down SC is present in one form or another in all models of analogy-
making. It captures an important aspect of the structural constraint as posited by 
Gentner (1983) and Holyoak & Thagard (1989): When two propositions 
correspond, it is highly desirable that their respective arguments also 
correspond. 

The difficulties begin with the disambiguation of the phrase ‘respective 
arguments’ above. Some models (e.g. Falkenhainer et al., 1986) walk around 
this difficulty by assuming that the enumeration of the arguments in a proposition 
can be meaningfully transferred to another proposition. From our point of view, 
this approach seems too conservative and psychologically implausible. In 
contrast, Holyoak & Thagard (1989) follow an approach that seems too liberal — 
they consider all possible argument pairs. 

 Thanks to the elaborated knowledge representation scheme adopted in 
DUAL (Kokinov, 1988, 1992), AMBR does not have great difficulties with this 
problem. Each argument is represented by a separate S-slot  with many facets. 
One of these facets points to the respective slot in the parent concept as 
discussed in section 4.4. This greatly facilitates the structure correspondence 
mechanism and relieves the model of implausible assumptions. Moreover, 
supports mapping propositions with different number of arguments (Kokinov, 
1994a; Hummel & Holyoak, 1997). 

The details of the top-down structure correspondence in AMBR are the 
following: The symbolic processor of each mature hypothesis checks whether the 
two elements are propositions. The criterion is whether they contain the tags 
:instance and :relation among the fillers of their type slots. If this is the 
case, the symbolic processor attempts to determine the slot-to-slot 
correspondences. To do this, it needs the so called pivot concept. 

The pivot concept is a concept which is a common superclass of both 
relations. For example, if the propositions are instances of the relations in and 
on, the pivot concept could be in-touch-with, asymmetric-binary-
relation, or something else depending on the particular problem and context. 

The pivot concept is often identified by the marker passing mechanism. 
When such information is available, the symbolic processor of the ‘proposition’ 
hypothesis generates the appropriate ‘argument’ hypotheses. When the informa-
tion is not available, the symbolic processor checks for the obvious (and 
frequent) case when both propositions are instances of the same relation. In 
other words, it checks whether the inst-of slot of the two instances point to 
the same concept agent and uses the latter as a pivot concept. Otherwise, it 
gives up and stops, hoping the MP mechanism will provide the missing informa-
tion later. 
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5.5.3. Weak Structure Correspondence 

In many cases it is bad to allow the SC mechanism create new hypothesis 
but it is desirable to make it create additional justification links  between existing 
hypotheses.  This is the purpose of the weak SC. 

For example, suppose that two situations — CM1 and WTP — are being 
mapped. As discussed in subsection 4.5.3. these situations may involve states. 
Suppose that initst-CM1 and initst-WTP are two such states. The marker 
passing mechanism detects they are instances of the same concept (namely 
init-state) and creates the hypothesis initst-CM1<-->initst-WTP . 
Finally, suppose it establishes and becomes mature. Now the question is, 
“Should this hypothesis perform top-down structure correspondence?” 

Each state has several S-slots pointing to the elements of the  respective 
situation and the initial relations between them.  Thus, the two states resemble 
propositions of type and and, therefore, one  wishes to generate SC-motivated 
hypotheses about the arguments of these and-like propositions. Applying the 
usual (i.e. strong) structure correspondence mechanism indiscriminately, 
however, would lead to proliferation of useless hypotheses such as milk-
CM1<-->high-temp-WTP. To avoid this, states (and all agents having the tag 
:situation in general) are exempted from the strong top-down structure 
correspondence — the hypotheses involving such agents never generate any 
new hypotheses. 

On the other hand, they could establish new justification links. To see why, 
consider the hypothesis milk-CM1<-->water-WTP. It has a justification that 
has nothing to do with the membership of milk-CM1 in initst-CM1. Still this 
hypothesis is consistent with initst-CM1<-> initst-WTP and it is 
desirable to establish excitatory links between the two.  Such link would  improve 
the connectivity of the constraint satisfaction network  and strengthen the 
structural constraint on mapping. 

The main procedure for weak top-down structure correspondence is the 
following: Retrieve all S-slots of the two states and construct all possible pairings 
among them. Do not issue node construction requests, however. Instead, check 
the hypoth slot (see subsection 5.4.3.) of the secretaries   of each pair and 
look for an old hypothesis representing the same correspondence. If such hy-
pothesis is indeed registered at the secretaries, establish excitatory links to it. If 
there is no such hypothesis, however, then simply ignore the pair. 

The weak SC has a bottom-up variant too. It is the reverse of the ordinary 
top-down SC. That is, instead of descending from propositions to arguments, it 
tries to ascend from arguments to propositions. To illustrate, suppose milk-
CM1 is an argument in the proposition in-CM1  and water-WTP in the proposi-
tion in-WTP. Suppose further that there is a mature hypothesis milk-CM1<--
>water-WTP. Then this hypothesis will try to establish a link to the hypothesis 
involving in-CM1 and in-WTP provided such hypothesis is registered at the 
respective secretaries. 
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5.6. Rating and Promotion 

The mechanisms presented so far are concerned primarily with generating 
hypotheses and establishing links between them. The final goal of these efforts, 
however, is to arrive to a set of correspondences. To that end, the model must 
make commitments at some point. This is the main objective of the mechanisms 
discussed in this section. 

5.6.1. Rating Mechanism 

5.6.1.1. Motivation 

Each hypothesis on the secretary list of an entity agent represents a 
possible correspondence between the entity and someone ‘at the other side’. 
The one-to-one constraint on mapping imposes that each element from the one 
domain should map to one element from the other. There is ambiguity, however, 
because each element typically has several hypotheses registered at its 
secretary. The relaxation of the constraint satisfaction network resolves these 
ambiguities using the inhibitory links between the incompatible hypotheses. 

A straightforward approach for determining the final set of correspondences 
is to wait until the CSN settles and then pick up the hypotheses with maximal ac-
tivation levels. Thus ACME (Holyoak & Thagard, 1989) waits until all nodes in the 
network reach asymptote. There are, however, two drawbacks of this approach: 
(i) the decision to stop must be taken centrally and (ii) any post-mapping 
processing can begin only after the mapping stage is over. 

The rating mechanism avoids these limitations by promoting hypotheses 
during the run. This allows for smooth integration between mapping and post-
mapping processing. In particular, the processes of transfer (inference) and 
evaluation could begin before the CSN has settled completely. 

5.6.1.2. Main ideas 

Let us introduce the following terminology: a (current) leader is the hypoth-
esis with the highest activation level in its set at the moment; a (final) winner is 
the hypothesis that has been explicitly promoted and has transformed itself into a 
winner-hypothesis agent (cf. section 5.4.4). 

The main purpose of the rating mechanism is to monitor the hypotheses and 
send promotion incentives to those of them that emerge as stable and 
unambiguous leaders. It serves two collateral purposes as well: to eliminate 
hypotheses that are obvious losers and to trigger the skolemization mechanism. 

The rating mechanism is carried out by the (secretaries of) instance 
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agents11. Not all instances, however, are authorized to do so. Promoting winners 
is an important commitment that should be done carefully and by an ‘impartial 
judge’. Therefore, only the secretaries of the driver situation are authorized to 
promote winners. (In the current version of AMBR, the driver situation is always 
the target. Future versions will switch the source analog as driver for the 
purposes of the transfer process (Hummel & Holyoak, 1997). They will probably 
grant some limited rating authority to recipient secretaries as well.) 

Whenever an instance agent receives a hypothesis registration request 
(subsection 5.4.3), it checks if it is authorized to do ratings. The cri terion is 
whether its respective situation agent has the tag :driver in its modality 
slot. If authorized, the secretary creates a data struc ture called a rating table and 
stores it in its buffer. (Recall from section 3.1.3 that each DUAL agent has some 
limited local memory.) The rating table keeps individual ratings for all mature hy-
potheses on the secretary list. Individual ratings are numerical quantities that 
characterize the relative success of the respective hypothesis.  

The secretary periodically performs rating surveys to adjust the ratings. 
Each survey determines the current leader and increases its individual rating a 
little. The ratings of all other hypotheses are decreased. The magnitude of the 
change is proportional to the margin between the activation levels of the leader 
and its closest competitor. (If there is only one hypothesis, its activation is 
compared against the neutral level.) Thus, each rating value indicates how long 
the respective hypothesis has been a leader, how recently, and how strongly so. 

Each new hypothesis starts at some intermediate rating level and then goes 
up or down depending on its relative standing in the total pool of competing hy-
potheses. If the rating reaches some critical winner rating, the hypothesis is 
considered for promotion. (It is not automatically promoted, however, as 
discussed below.) On the other hand, if the rating drops below some critical 
loser rating, the hypothesis is considered for elimination. 

As a consequence of this computational scheme, hypotheses that are clear 
and unambiguous leaders rapidly reach promotion. On the other hand, when 
there are two or more competitors of equal strength or when there is a change in 
the leadership, the secretary refrains from making premature commitments. The 
decision is deferred until other secretaries announce their winners and change 
the balance in the CSN. 

5.6.1.2. Promotions and ballotages 

When the individual rating of some hypothesis reaches the critical winner 
level, it becomes a candidate for promotion. As this criterion alone is not always 
reliable, however, the secretary undertakes some additional last-minute checks 
to determine whether the candidate really merits promotion or not. If it does, the 

                                                 
11  Concept agents do not rate their hypotheses in the current version of AMBR. The so called 

promotion propagation mechanism will extend this functionality. This mechanism, however, 
is in experimental stage and is not reported in this Thesis. 
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secretary sends it a promotion incentive. When the candidate is judged 
inappropriate, though, the secretary announces a ballotage which means that the 
rating procedure should be repeated. 

The rating mechanism is based on local information only — the activation 
levels of the hypotheses registered at a single secretary. Hence, it  sometimes 
favors hypotheses that are inconsistent with the global mapping as determined 
by the CSN as a whole. The relaxation algorithm almost always succeeds to 
produce a consistent set of leaders for all secretaries. This, however, often takes 
time, especially when there are strong local anomalies that must be overcome. 

Consider the following example. The problem presented in section 5.1. 
involves a teapot: tpot-CM1. It so happens in one particular run that the target 
situation maps to a base with a dish (namely dish-FDO) instead of a teapot. As 
other bases also compete in the CSN, there are alternative correspondences for 
the target teapot. One of them — tpot-WTP — proves to be an especially 
strong competitor. In addition to its greater semantic similarity, it is also 
supported by the fact that there is an explicit proposition about its material. A 
similar proposition participates in the target description too. This leads to a triad 
of mutually supporting hypotheses: tpot-CM1<-->tpot-WTP, made-of-
CM1<--> made-of-WTP, and metal-CM1<-->metal-WTP. It is difficult for 
dish-FDO, whose material is not explicated, to beat this cluster alone. 

Still, strong factors elsewhere in the CSN (other propositions, causal struc-
ture, etc.) dictate that the target as a whole maps better to situation FDO, not to 
situation WTP. The secretary of tpot-CM1  does not know this, though. On its 
local list it sees the hypothesis tpot-CM1<-->tpot-WTP that has come first 
and remained on top ever since. It consistently dominates the surveys and its 
individual rating reaches the critical level. If it is promoted, however, it (and its 
made-of entourage) would be an odd man out among all other winners from 
situation FDO. 

One way to prevent blendings of this kind is to set a high critical level for 
promotions. This will give time to the constraint satisfaction network to settle 
globally and straighten up local inconsistencies. This approach, however, 
effectively entails that all promotions occur after the mapping process is over. 
Subsequent processes of transfer, evaluation, etc. must take place when the 
CSN is frozen. This brings the model back to the pipeline paradigm that is anti-
thetical to the spirit of AMBR (cf. section 3.2.1). 

The current version of the model adopts a different strategy. The authorized 
secretary takes a step out of the local neighborhood. Before issuing a promotion 
incentive, it checks whether the candidate hypothesis is consistent with the 
leader at the level of situations. In the example, the secretary of tpot-CM1 
reads the situation  slot of the other element — tpot-WTP. Thus it learns 
that the latter is affiliated to sit-WTP. The secretary then contacts its own situ-
ation-agent (namely sit-CM1) and asks for the leader among the hypotheses at 
that level. It turns out that the leader there is the hypothesis sit-CM1<-->sit-
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FDO which is incompatible with sit-WTP. Therefore the secretary does not 
promote the candidate hypothesis.  

Instead, tpot-CM1 announces a ballotage and undertakes measures to 
weaken the unwanted hypothesis. It sends a message to the agent sit-CM1<-
->sit-FDO to create an inhibitory link to tpot-CM1<--> tpot-WTP. This 
speeds up the relaxation of the CSN. It also sets the individual rating of the 
unwanted hypothesis back to the initial level. The rating of the second best hy-
pothesis is also modified if it is below the initial level. Finally, the secretary 
triggers the skolemization mechanism when appropriate (see section 5.7). After 
all these emergency measures, it restarts the rating surveys. 

The previous paragraphs may create the impression that AMBR treats 
blends as something that must be avoided at all cost. This is not the case. 
Blends do happen in human analogy-making (e.g. Turner & Fauconnier, 1995) 
and should be accounted by cognitive models. Such blends, however, happen on 
quite special circumstances and involve  bigger and more complex episodes. 
The ballotage discussed here is designed to prevent blends with few isolated 
intruders into an otherwise homogeneous mapping. This aspect may be 
improved in future versions of the model. Even the current version could in 
principle produce heterogeneous mappings when there is a change of the 
leading hypothesis at the level of situation-agents. 

5.6.1.3. Elimination of losers 

In addition to promotion winners, the rating mechanism is also useful for 
weeding out loser hypotheses. Recall that the ratings of all hypotheses except 
the leader are decreased on each rating survey. When a rating drops below a 
critical threshold, the respective hypothesis is considered for elimination. If its 
activation level is also low, the hypothesis receives a fizzle message. Those hy-
pothesis whose activation levels are only moderately low, however, are retained 
as potentially useful. 

The elimination of losers adds another dimension of the dynamics of the 
constraint satisfaction network. It both grows and shrinks. New hypotheses are 
added by various justifications. In the same time, losers hypothesis die out. As a 
consequence, the size of the CSN varies dynamically, growing rapidly at first and 
then shrinking back to retain only the most promising hypotheses. Usually, each 
promotion is followed by a number of eliminations. At the end of the run, each 
secretary list contains one winner and one or two (or zero) ‘reserve’ hypotheses. 

When the target elements are presented incrementally to the system (e.g. by 
some perceptual mechanism), the ‘wavefront’ of the CSN follows suite. In this 
way the model seems to be able to handle situations that are much bigger than 
the ones used in current simulation experiments. The size of the CSN need never 
get very big. This has important consequences with respect to working memory 
limitations (Keane et al., 1994; Hummel & Holyoak, 1997). It also relates to the 
discussion of blending above — the target could match one base in the 
beginning, form some stable correspondences, and then shift to another base 
that better fits the target elements that have appeared in the interim. 
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5.6.2. Promotion mechanism 

This section describes the events triggered by reception of a promotion 
incentive in a hypothesis agent. This incentive marks the beginning of the third 
phase of the life cycle of the hypothesis (cf. subsection 5.4.4.). The mature 
hypothesis transforms into a winner. In the current version of the model this 
change involves nothing but removing the :mature tag from its type slot and 
adding :winner in its place. More radical restructuring is also possible (e.g. 
modifying the activation function, decay rate, efficiency coefficient, etc.). 

When the due restructuring is complete (and presumably it takes quite a lot 
of time), the new winner sends metamorphosis notifications to its two 
secretaries to inform them about the change. These notifications make them 
even more severe to the losers in their hypoth slots. Only a few of the strongest 
(in terms of activation level and/or ratings) alternatives are rescued. These 
survivors are marked by a tag :loser in their type slots. This tag is useful for 
detecting unmapped elements as a prerequisite for transfer. 

Moreover, each instance agent creates a temporary excitatory link to its 
counterpart as designated by the winner hypothesis. For example,  the 
metamorphosis notifications from tpot-CM1<-->dish-FDO cause each 
instance to create a link to the other. In particular, this creates a shortcut route for 
draining activation from the target, thus bringing more elements of the source 
situation to the working memory (cf. Figure 5.2.3). 

5.7. Skolemization 

5.7.1. Motivation 

Most analogy models either do not use semantic information at all 
(Falkenhainer, Forbus & Gentner, 1986; Keane & Brayshaw, 1988) or use it 
solely for estimating semantic similarity (Holyoak & Thagard, 1989; Kokinov, 
1994a; Hummel & Holyoak, 1997). It is clear, however, that human analogy-
making recruits much more semantic knowledge than that. There are at least two 
ways in which the general knowledge about some domain is used when making 
spontaneous analogies. 

First, semantic knowledge may be used for reconstruction and elaboration 
of source analog(s). Research on autobiographical memory provides evidence 
that recollection of past episodes involves much reconstruction in addition to rote 
retrieval (Barclay, 1986). It is reasonable to expect that the same is true for 
recollection of past problems and their solutions, examples from textbooks, etc. 
This, however, is largely ignored by current models of analog retrieval.  

On the other hand, semantic knowledge may be used for elaboration of the 
target problem. It can even provide pieces of the solution. For example, the 
general fact that plates are heat sources and as such are used to heat things is 
of obvious importance when asking how to heat water. Still, such knowledge 



- 72 -  

goes unused if the model deals exclusively with finding correspondences 
between two episodes. 

5.7.2. Main Ideas 

AMBR skolemization constructs specific propositions on the basis of general 
propositions. It is a mechanism for elaborating the description of a situation 
using general knowledge about its elements. 

Recall from section 4.4. that a general proposition is a proposition involving 
a general class instead of individual instance. If we ignore the details of the rep-
resentation scheme (cf. Figure 4.4.2), general propositions are most easily 
recognized by the fact that at least one of their arguments is a concept agent. 
Thus, made-of(teapot, metal) is a general proposition as opposed to the 
specific made-of(teapot-MTF, metal-MTF). Typically only one of the 
arguments of the general proposition is a concept; the other arguments are 
prototype instances. This creates asymmetry that often better capture the 
semantics. To illustrate, the proposition made-of(teapot, metal) could be 
read in two ways: ‘each teapot is made of metal’ and ‘each metal is the material 
of some teapot’. In contrast, the proposition made-of(teapot, 
prototypical-teapot-metal)  allows only the first interpretation. 

One way or another, a general proposition represents a fact about some 
class of objects. The target problem and the episodes in the long-term memory, 
however, involve specific instances. The purpose of skolemization is to bring the 
general fact to the level of specific instances. This is done by constructing a new 
Skolem  proposition that parallels the general one but in which each concept or 
prototype argument is replaced by a specific instance. 

A question arises at this point, “Where do these specific instances come 
from?”  The AMBR answer is that they are either supplied by the marker passing 
mechanism or created from scratch. The first choice is preferred whenever 
possible, falling back to the second only in the absence of appropriate markers. 

For example, suppose the skolemization mechanism works on the general 
proposition made-of(teapot, metal). In order to specialize it, it needs 
instances of the classes teapot and metal. Looking for such instances, it 
checks the buffers of these concept agents for markers. Each marker originates 
from some instance agent and propagates upward in the class hierarchy (see 
section 5.3). Therefore, the origins of all markers arrived at a concept agent are 
instances of this concept. Suppose the buffer of teapot  contains a marker from 
teapot-MTF. Thus, teapot-MTF could be used as a specialization of the first 
argument of the general proposition. The same check is done for the second 
argument. For the sake of the example, suppose that the buffer of metal 
contains no markers. Therefore the skolemization mechanism creates a new 
instance of this class. Such instances are called Skolem instances. Let the 
name12 of the new agent is *metal-1.  

                                                 
12  By convention, the names of all agents created by the skolemization mechanism begin with 

an asterisk. 
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After the skolemization mechanism finds an instance argument for each slot 
of the general proposition, it is ready to construct the Skolem proposition. The 
last ingredient is the head of the proposition. It is made after the template 
provided by the head of the general proposition. (Note that the latter is an 
instance agent belonging to some relational class, see section 4.4.) In the 
example above, suppose the new agent is called *made-of-1. It is an instance 
of the relation made-of and its two S-slots are filled by teapot-CM1 and 
*metal-1, respectively. 

The final result of the whole process is that there is a proposition explicating 
the material of teapot-MTF. Like all teapots, it is made of metal. 

Note that the general proposition may involve a concept higher in the class 
hierarchy. To extend our example, saucepans, pans, and baking dishes are 
made of metal too. A single general proposition can cover them all: made-
of(cook-vessel, metal). 

5.7.3. Triggering Skolemiz ation 

Most of the work related to skolemization is carried out of the symbolic pro-
cessor of a general hypothesis. This section describes how such hypotheses 
are created and prompted to perform skolemization. 

A general hypothesis is a hypothesis involving a general proposition. It is 
created by the marker passing mechanism in the usual way. That is, the head of 
the general proposition (which is an instance agent) emits a marker when 
entering the WM. This marker propagates in the usual way and can intersect with 
other markers. As discussed in section 5.3, when two complementary markers 
intersect they give rise to a semantically justified hypothesis. Complementarity 
rules in this case specify that the other marker must originate from some driver 
element. Hence, the new hypothesis involves a proposition from the driver situ-
ation on one hand, and the general proposition on the other. 

Note that even though the semantic memory can potentially have thousands 
of general propositions, only a small fraction of them (if any) are used in each 
particular task. These ‘privileged’ propositions are determined by the driver. The 
elements of the driver transmit the activation necessary for bringing the general 
propositions (like any agents) to the working memory. Their markers are pre-
requisite for the creation of general hypotheses (like any hypotheses). 

Consider an example: The target problem CM1 (see section 5.1) contains 
the proposition made-of(tpot-CM1, metal-CM1). The head of this prop-
osition is the instance agent made-of-CM1. In the run that serves as an 
illustration throughout this chapter,  the latter agent happens to form the following 
general hypotheses: made-of-CM1<--> ckves-made-of-metal and 
made-of-CM1<-->bottle-md-glass. Each of them involves a general 
proposition and could be skolemized. 
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The actual skolemization process begins when the general hypothesis 
receives a skolemization incentive from an authorized secretary. The rating 
mechanism is responsible for determining which hypotheses receive such 
incentives, if any. General hypotheses register at the secretaries and participate 
in rating surveys in the usual way. If such hypothesis is the leader in its set, its 
rating goes up. When it reaches some critical level, the hypothesis receives a 
skolem incentive. 

General hypotheses are quite weak compared to hypotheses involving 
specific propositions. It is, therefore, quite rare that a general hypothesis wins 
the rating. This is good because affiliated propositions should be preferred to 
Skolem propositions anyway. In the example above, suppose that tpot-CM1 
maps to some other teapot whose material is explicitly represented too. Under 
these circumstances the driver proposition made-of-CM1 naturally maps to the 
respective recipient proposition and there is no need for skolemization. And so it 
happens — the specific hypothesis wins the rating and the general hypothesis 
never receives any skolem incentive. 

Skolem incentives are also sent during ballotages (see subsection 5.6.1.2).  

5.8. Putting It All Together 

This section closes the description of AMBR by completing the example 
introduced in section 5.1. It shows how the mechanisms of the model work 
together. 

After the target problem CM1 is presented to the system, activation spreads 
in the network and brings relevant concepts and instances to the working 
memory (see section 5.2). Two base situations are activated most and become 
the major competitors to map to the target. These are the situations FDO and 
WTP. Of the two, FDO turns out to be the final winner. Figure 5.8.1. plots the 
retrieval indices of the two situations. The retrieval index is computed as the 
mean activation level of all agents affiliated to the respective situation-agent. It is, 
therefore, an aggregate numerical measure of the overall accessibility of each 
episode. Note that these indices are neither computed nor used by the model. 
They are instruments for monitoring the emergent behavior of the system from 
the point of view of an external observer. 



- 75 -  

0 50 100 150

1

retr.idx (FDO)
retr.idx (WTP)  

Figure 5.8.1. Retrieval indices for two competing coalitions: 
FDO (solid line) and WTP (dashed line). Time varies 
across the X-axis, retrieval indices across the Y-axis. See 
text for details. 
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Figure 5.8.2. Mapping indices for two competing coalitions: 
FDO (solid line) and WTP (dashed line). Time varies 
across the X-axis, mapping indices across the Y-axis. 
See text for details. 

Figure 5.8.1. shows that early during the run the two rival coalitions are 
equally active. Later on, however, FDO continues to grow while WTP flats out 
and then even goes down. This difference is due to the influence of the mapping 
process as discussed below. 

Note that the winner coalition gets strength gradually. In other words, the 
base episode FDO is not retrieved in an all-or-nothing fashion. Instead, agents 
enter the working memory one by one. This is characteristic of the decentralized 
representation of situations discussed in Chapter IV. Transcript 5.8.1. lists the 
exact moments in which individual elements pass the working memory threshold. 
As evident from the transcript (and from the step-like increase of the retrieval 
index in Figure 5.8.1.), the description of the episode is retrieved from the long-
term memory in three parts — roughly at times 8, 30, and 68.  

The first group of agents enters the WM until time 8.20. It consists of the ele-
ments that are closest to the description of the target problem (cf. Figures 5.1.1. 
and 5.1.2. in section 5.1). The causal structure of the base episode is not 
unfolded yet. It is not present in the target either. Hence, the working memory 
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now contains two descriptions of comparable complexity. This is favorable for 
the mapping process (cf. section 4.5.2). 

T=0.40, adding t-of-FDO-o to WM. 
T=0.42, adding in-FDO-do to WM. 
T=0.78, adding t-of-FDO-f to WM. 
T=0.80, adding oven-FDO to WM. 
T=0.84, adding high-t-FDO to WM. 
T=1.78, adding sit-FDO to WM. 
T=1.80, adding dish-FDO to WM. 
T=2.68, adding initst-FDO-1 to WM. 
T=2.86, adding food-FDO to WM. 
T=3.40, adding on-FDO to WM. 
T=6.60, adding goalst-FDO to WM. 
T=8.20, adding in-FDO-fo to WM. 
T=25.30, adding interst-FDO to WM. 
T=29.70, adding to-reach-FDO to WM. 
T=29.80, adding cause-FDO-t to WM. 
T=31.10, adding follows-FDO to WM. 
T=31.20, adding endst-FDO to WM. 
T=68.00, adding cause-FDO-i to WM. 
T=68.10, adding initst-FDO-2 to WM. 

Transcript 5.8.1. Transcript showing the moments in which various 
members of situation FDO enter the working memory. 

Meanwhile, the marker passing and structure correspondence mechanisms 
generate a number of hypotheses. They register at their respective secretaries 
and incorporate into the constraint satisfaction network. The competition in the 
CSN can be monitored with the aid of the mapping indices plotted in Figure 
5.8.2. The mapping index is an aggregate numerical measure of the strength of 
the hypotheses between two situations. Like the retrieval index, it is not used by 
the model itself.  

At time 25 the hypotheses involving FDO elements start to dominate the 
CSN. The additional activation that they send to the main network allows a 
second group of agents to enter the working memory. These are the agents that 
explicate the causal structure of situation FDO. As this episode emerges as the 
likely winner, it is getting ready for the processes of transfer and evaluation. 

There are more obstacles to be overcome, however. The leading set of cor-
respondences includes an unwanted element — tpot-WTP and its supporting 
proposition made-of-WTP and metal-WTP. It manages to beat the agents 
from the leader situation because the latter does not have an explicit proposition 
about the material of its dish-FDO. As discussed earlier (subsection 5.6.1.2) 
the rating mechanism detects the blend and announces a ballotage. It also 
triggers the skolemization mechanism. 

The semantic memory contains a general proposition that all cook vessels 
are made of metal. As the baking dish from situation FDO belongs to that 
category, the skolemization mechanism generates a Skolem proposition stating 
that it is made of metal too. This happens between time 80 and 87.60. Transcript 
5.8.2. illustrates this and shows the Skolem messages that are exchanged 
during this process. Skolemization results in adding two new agents to the 
recipient situation. 
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T=80.00, #<SkI MADE-OF-CM1> received in MADE-OF-CM1<- ->CKVES-MD-METAL. 
T=80.50  made-of-CM1<-->ckves-md-metal begins skolemization. 
T=81.90, #<SM1 MADE-OF-CM1<-->CKVES-MD-METAL> received in *MATERIAL-METAL-1 
T=82.10, #<SM1 *MATERIAL-METAL-1> received in MADE-OF-CM1<-->CKVES-MD-METAL 
T=82.80, *material-metal-1 affiliates to sit-FDO. 
T=84.20, #<SM2 MADE-OF-CM1<-->CKVES-MD-METAL> received in *MADE-OF-1. 
T=85.00, #<SM2 *MADE-OF-1> received in MADE-OF-CM1<--> CKVES-MD-METAL. 
T=87.60, *made-of-1 affiliates to sit-FDO. 

Transcript 5.8.2. Transcript showing the events related to the 
skolemization mechanism. #<SkI xxx> is a Skolem incentive and  
#<SM1 xxx>  and #<SM1 xxx> are Skolem messages of different 
kinds. See text for details. 

Note that this in effect is a form of re-representation of the base aimed at 
bringing it in line with the target problem. As the target contains an explicit prop-
osition about the material of the teapot, the source builds a corresponding 
counterpart. On the other hand, the proposition shape-of(dish-FDO, 
rectang-FDO) that is contained in the original description of that episode never 
enters the WM. This demonstrates the flexibility of the decentralized representa-
tion of AMBR situations. 

After the skolemization, the mapping index of WTP (the competitor) rapidly 
goes down (see Figure 5.8.2). FDO is now clear and unambiguous winner. 
There are, however, some final rearrangements of the correspondences. In 
particular, the semantically grounded hypothesis in-CM1<-->in-FDO-do 
gives way to in-CM1<-->on-FDO under the influence of the structural 
constraint on mapping. The ambiguity between the two different 
temperature-of propositions in the base is also resolved. Table 5.8.1. lists 
the set of correspondences that are the leaders at three different times. 

 T = 50 T = 100 T = 200 
sit-CM1 sit-FDO sit-FDO sit-FDO 
milk-CM1 oven-FDO food-FDO food-FDO 
tpot-CM1 tpot-WTP oven-FDO dish-FDO 
in-CM1 in-FDO-do in-FDO-do on-FDO 
T-of-CM1 T-of-FDO-

oven 
T-of-FDO-
food 

T-of-FDO-
food 

low-T-CM1 high-T-FDO high-T-FDO high-T-FDO 
made-of-CM1 made-of-WTP *made-of-1 *made-of-1 
metal-CM1 metal-WTP *metal-1 *metal-1 
initst-CM1 initst-FDO-1 initst-FDO-1 initst-FDO-1 
goalst-CM1 goalst-FDO goalst-FDO goalst-FDO 
to-reach-CM1 to-reach-FDO to-reach-FDO to-reach-FDO 

Table 5.8.1. Leading correspondences for each target element at dif-
ferent times during the run. Target elements are listed in the left 
column. See text for details. 
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CHAPTER VI 

SIMULATION EXPERIMENTS 

6.1. Description of the Knowledge Base 
This chapter reports the results of several simulation experiments performed 

with AMBR. The long-term memory of the model is the same for all experiments, 
with variation of some links as described below.  

The LTM consists of 569 permanent agents. 273 of them are concept-
agents and encode semantic knowledge about the micro-domain introduced in 
section 4.1. For example, it is represented that tea, milk, and water are 
subclasses of drinkable-liquid , which in turn is subordinate to liquid . 
The system ‘knows’ that temperature-of is a physprop-relation and 
that its first argument must be an object while the second one a 
temperature-qualifier  such as high-temp or low-temp. The 
semantic memory also contains 49 instance-agents. Most of them are general 
propositions such as heat-source-is-hot and bottle-made-of-
glass. 

The remaining agents in the long-term memory represented twelve simple 
situations. These situations are outlined below. Appendix A contains a full 
description of one of them as taken directly from the source file fed to the 
program. Appendix B contains simplified representations in predicate calculus 
of all situations. 

Base situation WTP (Water in a Teapot on a Plate): There is some water 
in a teapot. The teapot is made of metal and its color is black. There is 
also a hot plate. The teapot is on the plate. The temperature of the 
plate is high. 

The goal is that the temperature of the water is high. 

The outcome is that the temperature of the teapot is high because 
it is on the hot plate. In turn, this causes the temperature of the water to 
be high, as it is in the teapot. 

Base situation BF (Bowl on a Fire burns out): There is some water in a 
bowl. The bowl is made of wood. There is also a fire. The bowl is on the 
fire. The temperature of the fire is high. 

The goal is that the temperature of the water is high. 

The outcome is that the bowl burns out because it is made of wood 
and is on the fire. In turn, this causes the water to dissipate, as it is in 
the bowl. 
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Base situation GP (Glass on a hot Plate breaks): There is some water in a 
glass. The glass is made of [material] glass. There is also a hot plate. 
The glass is on the plate. The temperature of the plate is high. 

The goal is that the temperature of the water is high. 

The outcome is that the glass breaks because it is made of 
[material] glass and is on the hot plate. In turn, this causes the water to 
dissipate, as it is in the glass. 

Base situation IHC (Immersion Heater in a Cup)13: There is some water in 
a cup. There is an immersion heater in the water. The immersion 
heater is hot. The cup is on a saucer. The cup is made of china. 

The goal is that the temperature of the water is high. 

The outcome is that the temperature of the water is high due to the 
hot immersion heater in it. 

Base situation FDO (Food on a Dish in an Oven)14: There is a baking dish 
and some food on it. The shape of the dish is rectangular. There is 
also an oven. The dish is in the oven. The temperature of the oven is 
high.  

The goal is that the temperature of the food is high. 

Since the food is on the dish which in turn is in the oven, the food 
is in the oven too. This causes the temperature of the food to be high, 
as the temperature of the oven is high. 

Base situation MTF (Milk in a Teapot in a Fridge): There is some milk in a 
teapot. The color of the teapot is green. There is also a fridge. The 
teapot is in the fridge. The temperature of the fridge is low.  

The goal is that the temperature of the milk is low.  

Since the milk is in the teapot which in turn is in the fridge, the milk 
is in the fridge too. This causes the temperature of the milk to be low, 
as the temperature of the fridge is low.  

Base situation ICF (Ice Cube in a Fridge)15: There is an ice cube on a 
glass. The glass is made of [material] glass. There is also a fridge. 
The glass is in the fridge. The temperature of the fridge is low.  

The goal is that the temperature of the ice cube is low.  

Since the ice cube is on the glass which in turn is in the fridge, the 
ice cube is in the fridge too. This causes the temperature of the ice 
cube to be low, as the temperature of the fridge is low.  

                                                 
13  See Figure 6.3.1.2. for a schematic diagram. 
14  See Figure 5.1.2. for a schematic diagram. 
15  See Figure 6.3.1.3. for a schematic diagram. 
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Base situation BPF (Butter on a Plate in a Fridge): There is some butter 
on a plate. The plate is made of china and its shape is circular. There 
is also a fridge. The plate is in the fridge. The temperature of the fridge 
is low. 

The goal is that the temperature of the butter is low.  
Since the butter is on the plate which in turn is in the fridge, the 

butter is in the fridge too. This causes the temperature of the butter to 
be low, as the temperature of the fridge is low. 

Base situation STC (Sugar in Tea in a Cup): There is some tea in a cup. 
There is some sugar in the tea. The taste of the sugar is sweet. The 
cup is on a saucer. 

The goal is that the taste of the tea is sweet. 
The outcome is that the taste of the tea is sweet due to sugar in it. 

Base situation SFF (Salt in Food in a Fridge): There is some food on a 
plate. There is some salt in the food. The taste of the salt is salty. 
There is also a fridge. The temperature of the fridge is low.  

The goal is that the temperature of the food is low.  
The outcome is that the food is both cold and salty. Since the food 

is on the plate and the plate is in the fridge, the food is in the fridge too. 
This causes the temperature of the food to be low. In the same time, 
the salt that is in the food causes its taste to be salty. 

Base situation ERW (Egg in Red Water): There is some water in a teapot. 
The color of the water is red. The teapot is made of metal. There is 
also an egg which is in the water. 

The goal is that the color of the egg is red. 
The outcome is that the color of the egg is red because it is in the 

red water. 

Base situation GWB (Glass in a Wooden Box): There is a glass. It is 
made of [material] glass. The glass is in a box. The box is made of 
wood. 

The goal is that the box protects the glass. 

The outcome is that the box protects the glass. 

The verbosity of these (simplified) descriptions reveal how much knowledge 
is involved even in the seemingly trivial task of heating water. As simple and 
monotonous as they are, the twelve situations are designed to highlight various 
subprocesses of analogy-making. The descriptions involve objects and relations 
in different combinations and at various levels of similarity. Many episodes 
involve identical objects but are not isomorphic. Others go the other way around. 
Some episodes fail to achieve their goal and/or have side effects besides the 
main goal. 
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6.2. Statistics Over 1000 Runs 

6.2.1. Experimental Setting 

This section tests the behavior of the model on ten target problems. The goal 
is to check whether the model can reliably access episodes from long-term 
memory and map them to the target. 

Each target problem is run 100 times, yielding a total of 1000 runs for the ten 
problems. All parameters of the model are kept constant across all runs (and 
across all experiments reported in this Thesis in general). 

The archi tecture DUAL is completely deterministic. The behavior of a DUAL-
based model such as AMBR depends on five factors (i) the target problem, (ii) 
the contents of the long-term memory, (iii) the order of presentation of target 
elements (order effect), (iv) the residual activation in the long-term memory 
(priming effect), and (v) the external environment (context effect). The 
experiments reported in this section vary the first factor as independent variable 
and use the second one as source of replications. The remaining factors are 
kept constant. (They are explored in separate experiments. Kokinov (1994a) has 
demonstrated priming and context effects in an earlier version of AMBR. Order 
effects are explored in section 6.4. below.) 

The knowledge base is replicated 100 times for the purpose of the 
experiments. Each variant contains the same 569 permanent agents  outlined in 
section 6.1. Most of the links among them are the same too. There are, however, 
some links that vary randomly across the 100 variants. They are ‘top-down’ links 
from concepts to instances (i.e. links labeled instance). The sampling 
procedure for picking up links for each KB variant is designed to approximate 
the (unimplemented) mechanism for dynamic  ‘privileged instances’ suggested 
in section 4.3. A small number of associative links (a-link) also differ 
randomly across KB variants. Thus it could be said that each variant represents 
a ‘snapshot’ of the long-term memory of the system. The core KB contains 
approximately 3000 links. Each variant adds about 100 new links (which 
amounts to less than 4% of the total network connectivity). 

Each target problem is run on each KB variant for 200 time units. This 
period is enough for the model to promote a winner situation in all but one of the 
1000 runs. (In this exceptional run the model failed to access any episode from 
LTM to a sufficient degree.) The dependent variable is the number of times that 
each source situation is accessed and mapped to the particular target problem. 

The activation level of all permanent agents is set to zero at the beginning of 
each run (i.e. there is no priming). Each target situation is represented by 
temporary agents. Some of them are attached to the goal and input nodes of the 
system. All attachments are done simultaneously at the beginning. The input 
node does not activate any agents apart from the target elements (i.e. the 
external context is ignored). 



- 82 -  

6.2.2. Heating Milk 

The first pair of problems that are presented to the system involve heating 
milk (in the micro-domain). There are complementary to each other in the sense 
that the first has an explicit representation of the goal but the initial conditions are 
incomplete. In contrast, the second problem specify the initial arrangement in full 
and asks about the expected outcome of this arrangement. Appendix B contains 
simplified representations in predicate calculus of all target situations. 

Target situation HM1 (Heating Milk, variant 1): There is a teapot and 
some milk in it. The teapot is made of metal. 

The goal is that the temperature of the milk is high. 

Target situation HM2 (Heating Milk, variant 2): There is a teapot and 
some milk in it. The teapot is made of metal. There is also a hot plate. 
The teapot is on the plate. The temperature of the plate is high. 

The goal, if any, is not represented explicitly. 

What is the outcome of this state of affairs? 
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Figure 6.2.2 Bar plots showing the frequencies of mapping 

each long-term memory episode to target problems HM1 
and HM2, respectively. 

The bar plots in Figure 6.2.2 demonstrate that in the majority of cases (54% 
of the runs) the model maps the target HM1 to the prototypical source episode 
about heating liquids — situation WTP. In these cases AMBR notices the analogy 
in which milk-HM1 maps to water-WTP. 

Two other sources stand out against the rest. Situation MTF is another good 
match. Its liquid is the same, but it requires the reversal high-
temperature<-->low-temperature. The fact that it is three times less 
frequent than WTP demonstrates that AMBR is sensitive to pragmatic pressures. 
The same pressures explain the frequency of situation IHC too — it represents 
an alternative way to heat liquids (by an immersion heater). 
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The second variant of the target problem (HM2) generates a similar pattern. 
The main difference is that situation WTP becomes even stronger (68%) at the 
expense of IHC. After all, the target problem contains a hot plate, not an 
immersion heater. 

The bar plots reveal also that the model is not confined to the most obvious 
solutions to a problem. It reaches them most of the time (as it should) but 
occasionally it chooses more remote analogs. These are the cases with 
frequencies below 5% in the graphs. Most of them are episodes having some 
superficial similarity to the target: a teapot, goal related to high temperature, etc. 
These low-frequency answers are an important attestation of AMBR’s flexibility. 

6.2.3. Cooling Milk 

The second pair of problems is similar to the first except that it deals with 
low temperatures. It tests whether AMBR is able to respond to a small (yet crucial) 
change in the target description. 

Target situation CM1 (Cooling Milk, variant 1)16: There is a teapot and 
some milk in it. The teapot is made of metal. 

The goal is that the temperature of the milk is low. 

Target situation CM2 (Cooling Milk, variant 2): There is a teapot and 
some milk in it. The color of the teapot is black. There is also a fridge. 
The teapot is in the fridge. The temperature of the fridge is low.  

What is the probable goal for this arrangement? 

The outcome of this state of affairs is not known. 

                                                 
16  See Figure 5.1.1. for a schematic diagram. 
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Figure 6.2.3 Bar plots showing the frequencies of mapping 

each long-term memory episode to target problems CM1 
and CM2, respectively. 

A brief comparison between the left plots in Figures 6.2.2 and 6.2.3 reveals 
that change in the filler of a single slot in a single target agent can turn the 
behavior of AMBR to 180 degrees. Specifically, the inst-of slot of low-T-
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CM1 (the second argument of temperature-of-CM1) is filled with a 
reference to the concept agent low-temperature while the respective slot in 
high-T-HM1 points to high-temperature. (The names of the agents them-
selves are of course irrelevant.)  This change is small but it is in a very important 
place — the respective agent is attached the goal node and the activation it 
provides to its parent concept is a major determinant of the overall content of the 
working memory. As a consequence, CM1 maps to MTF in 59% of the runs 
versus 19% for WTP. In contrast, the respective percentages for the target 
problem HM1 are 54% vs. 19%. (Recall that the experiment uses within subject 
design as the two targets run over the same set of knowledge bases.) Clearly, 
the pragmatic constraint plays an important role in AMBR. 

Let us now turn to the other problem in the pair: CM2. It is literally similar to 
the base situation MTF (Gentner, 1983, 1989). The only difference in the two 
descriptions, apart from the incompleteness of the target, is the color of the 
teapots. As seen in Figure 6.2.3, MTF wins in full 75% of the cases. This is the 
maximal frequency among all 1000 runs. All rival episodes occur with marginally 
low probabilities. This suggests that AMBR models accurately the empirical 
finding that analog access is dominated by literal similarities (Gentner & 
Landers, 1985; Holyoak & Koh, 1987; Ross, 1987). 

6.2.4. When the Container is Fragile 

The next pair is inspired by the target problem from  experimental studies on 
priming effects (Kokinov, 1990, 1994a). The subjects in these studies were 
asked how one could heat water in a wooden bowl in a forest. Kokinov (1994a) 
performed related simulation experiments in the micro-domain. 

Target situation WB1 (Water in a Bowl): There is a bowl and some milk in 
it. The bowl is made of wood. 

The goal is that the temperature of the water is high. 

Target situation WG1 (Water in a Glass): There is a glass and some water 
in it. The glass is made of [material] glass. 

The goal is that the temperature of the water is high. 

As evident from Figure 6.2.4, the model is split between two responses to 
the first problem. WTP is the prototypical case for heating liquids. It could not 
generate a good solution to the problem, however, as it suggests to put the bowl 
on the fire where it would burn. Still, it provides a sound match to the target. The 
other strong episode is BF which is an unsuccessful past attempt to solve this 
problem. 

Note that the source analog that provides the ‘immersion heater’ solution 
(IHC) works in only 6% of the cases. Incidentally, the subjects of (Kokinov, 1990) 
had similar difficulties in the absence of priming. 
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Figure 6.2.4 Bar plots showing the frequencies of mapping 
each long-term memory episode to target problems WB1 
and WG1, respectively. 

In an attempt to increase the probability of using the immersion heater, 
target problem WG1 replaces the wooden bowl with a glass. (Situation IHC 
involves a cup.) The attempt is moderately successful — the frequency of IHC 
increases to 11%. As a side effect, situation GP takes the place of BF. A look at 
the descriptions of these two episodes (see section 6.1) shows that this is to be 
expected. 
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Figure 6.2.5 Bar plots showing the frequencies of mapping 
each long-term memory episode to target problems SF1 
and SF2, respectively. 

6.2.5. Scaling Up: Problems Involving Taste 

The problems in this subsection go away from the temperature-related focus 
of the current knowledge base. They deal with tastes and are intended to check 
whether the model is able to switch to this different thematic line. The base 
episodes are added to the long-term memory for similar reason. 

Target situation SF1 (Salty Food, variant 1): There is a plate and some 
food on it. The plate is made of china. 

The goal is that the taste of the food is salty. 
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Target situation SF2 (Salty Food, variant 2): There is a plate and some 
food on it. There is some salt in the food. 

The goal, if any, is not represented explicitly. 

What is the outcome of this state of affairs? 

The bar plots in Figure 6.2.5. show that indeed the two episodes related to 
taste are accessed by these targets. Note also that situations  STC, SFF, and 
BPF almost never show up for other target problems. This gives reasons for 
some optimism about the ability of AMBR to scale up to larger memory sizes. It 
suggests that adding more and more episodes and different ‘thematic lines’ will 
not lead to diffusion of the answers. Of course, this topic should be explored 
more rigorously with future (and bigger) versions of the knowledge base. We fully 
agree that memory of 12 episodes is very insufficient to support any serious 
claims about the scalability of the model. 

6.2.6. Two Final Problems 

Target situation EHW (Egg in Hot Water): There is a teapot and some 
water in it. There is an egg in the water. The teapot is made of metal. 
The color of the egg is white. The temperature of the water is high. 

The goal, if any, is not represented explicitly. 

What is the outcome of this state of affairs? 

Target situation ICC (Ice Cube in Coke): There is a glass and some coke 
in it. The glass is made of [material] glass. There is an ice cube in the 
coke. The temperature of the ice cube is low. There is also a table. 
The glass is on the table. 

The goal, if any, is not represented explicitly. 

What is the outcome of this state of affairs? 
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Figure 6.2.6 Bar plots showing the frequencies of mapping 
each long-term memory episode to target problems EHW 
and ICC, respectively. 
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The target problem EHW and its long-term memory counterpart ERW are 
added for similar scaling-up considerations. Problem ICC is used for the 
experiment discussed in section 6.3. The respective bar plots are shown in 
Figure 6.2.6. 

6.2.7. Variability and Determinism 

A few final remarks are in order before closing this section. Table 6.2.7. 
presents the joint distribution produced by all 1000 runs. The few empty cells in 
the table (the first column notwithstanding) indicate that the model populates all 
regions of its ‘problem space’. That is, there is some small probability to map 
any source analog to almost any target. No possibilities are ruled out a priory. 
On the other hand, AMBR focuses on the episodes that best fit any given 
problem. It is efficient without being rigid. This is a consequence of the dynamic 
emergent style of computation that is characteristic of DUAL (Kokinov, Nikolov, & 
Petrov, 1996). 

Note also that although AMBR is completely deterministic, it is still able to 
demonstrate the variability of behavior evident from the table. As described in 
subsection 6.2.1., the random factor in the experiment amounts to less than 4% 
of the initial links in the long-term memory. Nevertheless, each target problem 
generates a whole range of answers. This is again a consequence of the 
dynamic emergent style of computation. The macroscopic behavior of the 
system depends on a multitude of interrelated microscopic factors. A small 
change in the initial conditions can drift the global outcome far away in the 
problem space. Therefore, the macroscopic behavior of AMBR must be analyzed 
in probabilistic terms even though all microscopic mechanisms are 
deterministic. 
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HM1  54 3 2 13 19 1  4   4  100 
HM2  68 2 1 5 20 1  3     100 

CM1  19 1  4 59 5 2 4  1 5  100 
CM2  4 2 1 2 75 3 3 1  4 5  100 

WB1  33 44 4 6 1 3  3  1 2 3 100 
WG1  38 4 21 11 5 3  4   8 6 100 

SF1 1  1 3 7  1 20 1 10 53 1 2 100 
SF2  3 6 4 5 6  5 3 11 53 3 1 100 

EHW  37 2  11 9  1 4 1  35  100 
ICC  8 3 19 4 20 30 1 4 3 6  2 100 

Total 1 264 68 55 68 214 47 32 31 25 118 63 14 1000 

Table 6.2.7. Joint distribution for all 1000 runs. Each cell gives the 
frequency of accessing and mapping a target problem (row) to a 
source episode (column). 
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6.3. Influence of Mapping on Analog Access 

6.3.1. Simulation Experiment Method 

This section presents a case study exploring the integration of analog 
access and mapping in AMBR. It contrasts two strategies for combining access 
and mapping — parallel vs. serial. 

6.3.1.1 Design 

The experiment consists of two conditions. Both conditions involved running 
the model on a target problem. In the ‘parallel condition’, AMBR operates in its 
normal manner with the mechanisms for access and mapping working in parallel.  
In the ‘serial condition’, the program is artificially forced to work serially — first to 
access and only then to map. The target problem and the content of the long-
term memory are identical in all runs. The topics of interest fall into two cat-
egories — the final mapping constructed by the program and the dynamics of the 
underlying computation.  The latter is monitored by recording a set of variables 
describing the internal state of the system at regular time intervals throughout 
each run. 

6.3.1.2. Materials 

The experiment uses the knowledge base described in section 6.1. 
Situation ICC (Ice Cube in Coke) is the target problem. Its verbal description is 
given in subsection 6.2.6. Two of the twelve episodes are most important for the 
present discussion: situations IHC (Immersion Heater in a Cup with water) and 
ICF (Ice Cube in a Fridge). 

coke

glass

table

m.glass

low-T ice.cube
T-of

made-of

in

in

on

Sit. ICC  

Figure 6.3.1.1.  Schematized representation of target situ-
ation ICC. Objects are shown as boxes and rela tions as 
arrows. The actual AMBR representation is more complex 
and consists of 15 agents. 
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Figure 6.3.1.2.  Schematized representation of situation IHC. 
Dashed arrows stand for relations in the ‘outcome’.  The 
actual AMBR representation is more complex — it consists 
of 19 agents and explicates the causal structure (not 
shown in the figure). 
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Figure 6.3.1.3.  Schematized representation of situation ICF. 
The actual AMBR representation is more complex — it 
consists of 21 agents and explicates the causal structure 
(not shown in the figure). 

As evident from Figures 6.3.1.1, 2, and 3, both situations IHC and ICF may 
be considered similar to the target problem.  There are some differences, how-
ever. Situation ICF involves the same objects and relations as the target but the 
structure of the two are different. In contrast, situation IHC involves different 
objects but its system of relations is completely isomorphic to that of the target.  
According to Gentner (1989), the pair IHC–ICC may be classified as analogy 
while ICF-ICC as mere appearance.  Thus it is expected that situation ICF would 
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be easier to retrieve from the total pool of episodes stored in LTM. On the other 
hand, IHC would be more problematic to retrieve but once accessed it would 
support better mapping. 

6.3.1.3. Procedure 

The model is run two times on the target problem. The two runs carry out the 
‘parallel’ and the ‘serial’ conditions of the experiment, respectively. The contents 
of the long-term memory and the parameters of the model are identical in the two 
conditions. 

Recall that  situations have decentralized representations in AMBR.  The 
target problem is represented by a coalition of 15 agents standing for the ice-
cube, the glass, two instances of the relation in and so on (See Appendix B).  
12 of these agents are attached to the special nodes that serve as activation 
sources in the model. The attachment is the same in the two experimental 
conditions. 

In the parallel condition, the model is allowed to run according to its 
specification. That is, all AMBR mechanisms run in parallel, interacting with each 
other. The program iterates until the system reaches a resting state. A number of 
variables are recorded at regular intervals throughout the run. Out of these many 
variables, the retrieval index is of special interest. It is computed as the average 
activation level of the agents involved in each situation. 

In short, the data accumulated at the end of the run are the final mapping 
constructed by the program and a log file of the retrieval indices of all twelve 
situations from the LTM. 

In the serial condition, the target problem is attached to the activation source 
in the same way and the same data were collected.  However, the operation of 
the program is forcefully modified to separate the processes of access and 
mapping. To that end, the run is divided in two steps. 

During step one, all mapping mechanisms in AMBR are manually switched 
off. Thus, spreading activation is the only mechanism that remains operational. It 
is allowed to work until the pattern of activation reaches asymptote. The situation 
with the highest retrieval index is then identified. If we hypothesize a ‘retrieval 
module’, this is the situation that it would access from LTM. 

After the source analog is picked up in this way, the experiment proceeds 
with step two. The mapping mechanism is switched back on again but it is 
allowed to work only on the source situation retrieved at step one. This situation 
is mapped to the target.  Thus, the data at the end of the second run are the final 
mapping constructed at step two and two logs of the retrieval indices. 

6.3.2. Results and Discussion 

In both experimental conditions the model settles in less than 150 time units 
and produces consistent mappings. By ‘consistent’ we mean that each element 
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of the target problem is unambiguously mapped to an element from LTM and that 
all these corresponding elements belong to one and the same base situation. 
Stated differently, the mappings are one-to-one and there are no blends between 
situations. 

In the parallel condition, the target problem maps to situation IHC, yielding 
the correspondences in–in, water–coke, imm.heater–ice.cube, T.of–T.of, 
high.T–low.T, made.of–made.of, etc. Four elements from the source situation 
remain unmapped and in particular the agent representing that the water is hot.  
This proposition is a good candidate for inference by analogy. Mutatis 
mutandis, it could bring the conclusion that the coke is cold. 

In the serial condition, situation ICF wins the retrieval stage.  This is 
explained by the high semantic similarity between its elements and those of the 
target — both deal with ice cubes in glasses, cold tempera tures, etc. The 
asymptotic level of the retrieval index for ICF is about four times greater than that 
of any other situation. In particular, situation IHC ends up with only 5 out of 19 
agents passing the working memory threshold. 

According to the experimental procedure, situation ICF is then mapped to 
the target during the second stage of the run.  The correspondences that emerge 
during the latter stage are shown in Table 6.3.2.  The semantic similarity 
constraint dominates this run.  This is not surprising given the high degree of 
superficial similarity between the two situations. There is, however, a serious 
flaw in the set of correspondences. The proposition T-of(ice-cube-ICC, 
low-T-ICC), which belongs to the initial state of the target, is mapped to the 
proposition T-of(ice-cube-ICF, low-T-ICF), which is a consequence 
in the source. Therefore, the whole analogy between the target problem and 
situation ICF could hardly generate any useful inference. 

Base situation ICF Target situation ICC 
ice-cube ice-cube 
fridge coke 
glass glass 
in (ice-cube, fridge) in (ice-cube, coke) 
in (glass, fridge) in (coke, glass) 
on (ice-cube, glass) on (glass, saucer) 
T-of (fridge, low-T) <unmapped> 
T-of (ice-cube, low-T) T-of (ice.cube, low-T) 
low-T low-T 
made-of (glass, m.glass) made-of (glass, m.glass) 
m.glass m.glass 
initstate1 initstate 
initstate2 <unmapped> 
interstate table 
endstate endstate 
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goalstate <unmapped> 
follows (initstate1, endst) follows (initstate, endst) 
to-reach (initstate1, 
goalst) 

<unmapped> 

cause(initstate2,in(ic,fr)) <unmapped> 
cause(interstate,T-
of(ic,lT)) 

<unmapped> 

Table 6.3.2.  Correspondences constructed by the model in 
the serial condition. 

 To summarize, when the mechanisms for access and mapping work 
together, the model constructs an analogy that can potentially solve the problem. 
On the other hand, when the two mechanisms are separated, the retrieval stage 
favors a superficially similar but inappropriate base. 

The presentation so far concentrated on the final set of correspondences 
produced by the model. We now turn to the dynamics of the computation as 
revealed by the retrieval indices.  Figure 6.3.2.1 plots the retrieval indices for the 
two critical LTM episodes during the first run of the program (i.e. when access 
and mapping work in parallel).  Figure 6.3.2.2 concentrates on the early stage of 
the first run and compares it with the second run (i.e. when only the access 
mechanism is allowed to work). Note that the two plots are in different scales. 

sit.IHC

sit.ICF
0.0

0.5

1.0

1.5

0 20 40 60 80 100 120  

Figure 6.3.2.1.  Plot of retrieval indices versus time for the 
parallel condition. The 'south-west' corner of the plot is 
reproduced in Figure 6.3.2.2. with threefold magnification. 

These plots tell the following story:  At the beginning of the parallel run, 
several situations are probed tentatively by bringing a few elements from each 
into the working memory. Of this lot, ICF (with the ice cube) looks more prom-
ising than any of its rivals as it has so many objects and relations in common with 
the target. Therefore, about half of the agents belonging to situation ICF enter the 
working memory and begin trying to establish correspondences between 
themselves and the target agents. The active members of the rival situations are 
doing the same thing, although with lower intensity —  their symbolic processor 
are slower. 
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At about 15 time units since the beginning of the simulation, however, situ-
ation IHC (with the immersion heater) rapidly gains strength and eventually 
overtakes the original leader. At time 40, it takes the lead and gradually 
transforms its small advantage into an uncompromising triumph. 

The final victory of situation IHC, despite its lower semantic similarity 
compared to situation ICF, is due to the interaction between the mechanisms of 
access and mapping in AMBR. More precisely, in this particular case it is the 
mapping that radically changes the course of access. To illustrate the 
importance of this influence, Figure 6.3.2.2 contrasts the retrieval indices with 
and without mapping. 

IHC, pararel

ICF, paralel

IHC, serial

ICF, serial
0.00

0.25

0.50

0 10 20 30 40
 

Figure 6.3.2.2. Retrieval indices for situations IHC and ICF 
with and without mapping influence on access.  The thick 
lines correspond to the parallel condition and replicate 
(with threefold magnification) the lines from the 'south-
west' corner of Figure 6.3.2.1.  The thin lines show ‘pure’ 
retrieval indices. 

The thin lines in the figure show the retrieval indices for the two situations 
when mapping mechanisms are suppressed. Thus, they indicate the ‘pure’ 
retrieval index of each situation — the value that is due to the access mechanism 
alone. The index for situation ICF is much higher than that of IHC and, therefore, 
ICF is used as source when the mapping is allowed to run only after the access 
has finished. 

The step-like increases of the plots indicate moments in which an agent (or 
usually a tight sub-coalition of two or three agents) passes the working memory 
threshold (cf. Transcript 5.8.1).  This happens, for instance, with situation ICF 
between time 20 and 30 of the serial condition (the thin dashed line in Figure 
6.3.2.2). Thus, accessing a source episode in AMBR is not an all-or-nothing 
affair. Instead, situations enter the working memory agent by agent and this 
process extends far after the beginning of the mapping. In this way, not only can 
the access influence the mapping but also the other way around. 

In the interactive condition the mapping mechanism boosts the retrieval 
index via what we call a bootstrap cascade. This cascade operates in AMBR in 
the following way. First, the access mechanism brings two or three agents of a 
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given situation into the working memory. If the mapping mechanism then detects 
that these few agents can be plausibly mapped to some target elements, it 
constructs new correspondence nodes and links in the AMBR network. This 
creates new paths for the highly active target elements to activate their mates. 
The latter in turn can then activate their ‘coalition partners’, thus bringing a few 
more agents into the working memory and so on. 

The bootstrap cascade is possible in AMBR due to two important character-
istics of this model. First, situations have decentralized representations which 
may be accessed piece by piece. Second, AMBR is based on a parallel 
cognitive architecture which provides for concurrent operation of numerous 
interacting processes. Taken together, these two factors enable seamless 
integration of the subprocesses of access and mapping in analogy-making. 

6.4. Order Effect on Analog Access 

6.4.1. Simulation Experiment Method 

This section presents an experiment testing the prediction made in sub-
section 5.2.4. — the order of presentation of target elements affects the 
frequency of accessing episodes from memory. More concretely, source 
analogs containing elements which are semantically similar to a given target ele-
ment are accessed more frequently when this target element is attached earlier 
to the input node. 

6.4.1.1 Design 

The experiment consists of three conditions. The same target problem is 
presented to the system in all three conditions. In the control condition all target 
elements are attached simultaneously to the input and goal nodes. In the two 
experimental conditions the elements are attached in two different (and roughly 
reverse) orders. The dependent variables are frequencies of accessing and 
mapping the episodes in the long-term memory. 

6.4.1.2. Materials 

Target situation EHW presented in section 6.2.6. is used as a target 
problem. Its verbal description is reproduced below. The 100 variants of the 
knowledge base described in section 6.2.1. are used as replications. 

Target situation EHW (Egg in Hot Water): There is a teapot and some 
water in it. There is an egg in the water. The teapot is made of metal. 
The color of the egg is white. The temperature of the water is high. 

The goal, if any, is not represented explicitly. 

What is the outcome of this state of affairs? 
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Note the following details of this description. On one hand, there is some 
water whose temperature is high. These elements are similar to the source 
analogs related to heating water and in particular to situations WTP (Water in a 
Teapot on a Plate) and IHC (Immersion Heater in a Cup). On the other hand, 
there is an egg whose color is white. These elements are similar to situation 
ERW (Egg in Red Water) described in section 6.1. 

6.4.1.3. Procedure 

The target problem is run three times on the set of 100 knowledge bases, 
yielding a total of 300 runs. In the control condition, all target elements are 
attached to the input node at the beginning of the run. The number of times that 
each of the twelve episodes in the long-term memory are accessed and mapped 
is recorded. 

In the hot water condition the agents water-EHW, T-of-EHW, and high-
T-EHW are attached to the input node at time zero. The remaining target ele-
ments are attached later according to the schedule shown in the left column of 
Table 6.4.1.3.  

In the colored egg condition the agents egg-EHW, color-of-EHW , and 
white-EHW are attached to the input node at time zero. The remaining target 
elements are attached later according to the schedule shown in the right column 
of Table 6.4.1.3. 

time ‘hot-water’ condition ‘colored-egg’ condition 
0 water 

high-T 
T-of(water,high-T) 

egg 
white 
color-of(egg,white) 

5 teapot teapot 
10 metal 

made-
of(teapot,metal) 

metal 
made-
of(teapot,metal) 

15 in(water,teapot) water 
20 egg in(egg,water) 
25 in(egg,water) in(water,teapot) 
30 white 

color-of(egg,white) 
high-T 
T-of(water,high-T) 

35 endst 
follows(initst,endst
) 

endst 
follows(initst,endst
) 

Table 6.4.1.3. Time schedule for attaching different target 
elements in the two experimental conditions. 
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6.4.2. Results and Discussion 

Figure 6.4.2.1. shows bar plots of the frequencies obtained in the two 
experimental conditions. The bar plot for the control condition is shown in Figure 
6.2.6. is section 6.2 
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Figure 6.4.2.1. Bar plots showing the frequencies of 
accessing and mapping each long-term memory episode 
in the ‘hot water’ and ‘colored egg’ conditions, 
respectively. 

The data show that each experimental condition differs from the control and 
from each other. The difference is very significant according to the chi-square 
test (χ2=89.5, df=7, p<0.00001). Moreover, the effect is in the predicted direction 
— the two base situations about heating water appear much more frequently in 
the ‘hot water’ condition. The reverse pattern holds for the episode about 
coloring an egg (ERW). 

Condition freq(WTP) freq(IHC) freq(ERW) other total 

Hot water 58 (37) 16 (11)  5 (35) 21 (17) 100 
Color egg 12 (37)  6 (11) 67 (35) 15 (17) 100 

Total 70 (74) 22 (22) 72 (70) 36 (34) 200 

Table 6.4.2. Observed frequencies of accessing base epi-
sodes from memory for the two experimental conditions. 
The control condition (in parentheses) defines the 
expected frequencies for the chi-square test. χ2=89.5, 
df=7, p<0.00001. 

Thus, order of presentation of the target problem influences the process of 
accessing source analogs in AMBR. As the mapping process in the model is 
intimately intertwined with access, it is influenced too. Moreover, the direction of 
influence is in accord with the well-known primacy effects demonstrated in many 
studies of short-term memory (e.g. Postman & Phillips, 1965). Elements that 
appear earlier have greater impact than later elements. 
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AMBR differs from other models of analog retrieval with respect to the 
primacy effect (Forbus, Gentner, & Law, 1994; Hummel & Holyoak, 1997). As far 
as we can judge from the articles, neither MAC/FAC nor LISA predict such order 
effect on analog access. The first stage of MAC/FAC depends on dot products 
over feature vectors and, therefore, all target elements necessarily enter 
simultaneously. Thus the model must wait until all target elements are available 
and only then can trigger the retrieval process. 

LISA do present target (or more precisely driver) elements in a temporal 
order. Indeed, this is the only way of processing available to LISA due to the 
limitations of the phase set. As argued in section 4.5.1, however, the model uses 
centralized representation of situations. Therefore, episodes are retrieved as 
units — either all nodes are flipped from dormant to recipient mode or none of 
them. In the current version of LISA this decision is taken probabilistically based 
on the Luce retrieval index computed for each episode in LTM (Hummel, 
personal communication, January 1998). The important point is that the indices 
are computed after multiple iterations through the whole driver set. The article 
does not specify the moment in which the probabilistic decision about bringing 
an episode to the working memory is taken (Hummel & Holyoak, 1997). If we 
suppose that this happens after the network has settled, the order of the driver 
set would have negligible effect on the retrieval indices. 
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CHAPTER VII 

EVOLVING AMBR: AMBR4 ? 

 Throughout this thesis we have emphasized that analogy-making cannot be 
decomposed into a sequence of independent components. AMBR advocates an 
interactionist emergent approach and conceptualizes analogy-making in terms 
of overlapping subprocesses (Figure 3.2.1.2). Still, the current version of the 
model addresses mainly the subprocesses of access and mapping. Does this 
mean that AMBR assumes that these two subprocesses can be modeled 
separately from the rest? 

The problem lies in the complexity of analogy-making. As we have argued, it 
is not an isolated module but emerges out of the general cognitive architecture. 
Therefore, any comprehensive treatment of analogy-making should cover the 
whole cognition. For instance, Chalmers, French, & Hofstadter (1992) have 
argued that analogy is inseparable from high-level perception. Without 
perception, the mapping between the base and the target is in effect contained 
in latent form in the representations of the two episodes. As AMBR starts from 
hand-coded descriptions, it takes the essence of the analogy from outside. This 
definitely is a limitation of the model. It should try to include mechanisms for high-
level perception in the future. But high-level perception is obviously rooted in low-
level perception. Perception at all levels involves attention, which in turn depends 
on motivation, which is culturally grounded, etc., etc. 

It follows that any model of analogy-making is necessarily incomplete. AMBR 
makes no exception. We hope, however, that it is open-ended enough to be able 
to grow. This chapter suggests ways for extending the model in two directions: 
transfer and perception. 

7.1. Possibilities for Transfer 

In the current version of AMBR, each run of the model ends in the following 
way: One by one the authorized secretaries (i.e. the agents from the target, see 
section 5.6) pick up one of the hypotheses registered at them and send it a 
promotion incentive. The promoted agents enter the third phase of their life 
cycle and become winner hypotheses. All other hypotheses registered at the 
respective secretaries become losers. In this way, the model makes commit-
ments about the correspondences between the two episodes. As there are no 
mechanisms that can advance the process further, the model stops. All symbolic 
activity comes to an end. The activation in the network reaches a resting state. 
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In a hypothetical future version of AMBR (AMBR4 ?), the mapping between the 
base and the target is to be used for generating inferences in the target (and 
possibly the base). We refer to this process as transfer. It involves at least three 
issues: 

1. Which members of the two descriptions remain unmapped?  These are 
the potential candidates for transfer? As AMBR uses decentralized representa-
tions of situations, this question cannot be answered by going through some list-
like structure and crossing out mapped entities. 

2. Which unmapped elements really merit transferring? This is a very difficult 
question. For example, suppose the target problem is to heat some milk in a 
teapot. The base contains water, a teapot, and a hot-plate (among other things). 
The color of the teapot in the base is green. The temperature of the plate is high. 
Neither proposition has any analog in the target and, therefore, both are 
candidates for transfer. Perhaps the milk will get hot if one paints the teapot 
green? 

3. How to carry elements from the one domain to the other? Objects and 
propositions in the base cannot be copied literally to the target; they must be 
‘translated’. 

The ordering above looks like a sequence of steps but it should not be 
understood in this way. According to the overall philosophy of AMBR, these 
‘steps’ overlap in time. Whenever an element is identified as unmapped (point 
1), the evaluation of its relevance and potential usefulness could begin (point 2). 
There is no need to wait for the other unmapped agents. In addition, the potential 
usefulness of an element depends on the quality of the inferences that this ele-
ment could ‘propose’ (point 3). Hence, in our view the whole process should be 
modeled by a ‘wave’ similar to the one outlined in subsection 3.2.1. 

How could AMBR mechanisms carry out the transfer process? Let us start 
with point 1. above. One possible answer is that the secretaries of the target are 
authorized to judge which elements are mapped while the secretaries of the 
source are authorized to judge which elements are unmapped. 

Hummel & Holyoak (1996, 1997) propose two very useful concepts. In 
addition to the conventional target/base distinction, they introduce the 
driver/recipient distinction. The driver is the one that has the initiative and 
‘makes things happen’. In AMBR terminology, it is authorized. This could be the 
target problem or the source episode. Hummel & Holyoak (1997) suggest the 
following ‘canonical flow of control’: First the target is used as driver during the 
access stage. Once a source is in working memory, mapping can be performed 
in either direction (including successive switches between the two episodes). 
After the mapping stage is over, the source is used to drive inferences and 
schema induction in the target. 

We adopt the driver/recipient terminology and agree with the main idea of 
the previous paragraph. However,  we propose a correction — switches 
between ‘driver mode’ and ‘recipient mode’ should not be done in a way that 
serializes the process of analogy-making and cut it into separate stages 
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(marked by interventions of the human user). Among other things, this implies 
that it should be possible that both situations act as drivers simultaneously. 

For lack of better terminology, we will denote the situation (or, more 
precisely, the elements thereof) that drives the mapping as driver-M . The one 
that drives the transfer is driver-T. Each is authorized to do different and 
complementary things. 

The target problem in AMBR typically acts as driver-M. Its agents access 
(partially) episodes from the long-term memory, establish correspondences, 
administer rating surveys, and promote winners. When a source episode 
emerges as winner, it becomes driver-T and its agents become authorized to 
identify unmapped elements, judge their potential usefulness for transfer, 
propose ‘translations’ in the target, etc. The two coalitions — driver-M and driver-
T — work together, each according to its authorization. In this way, the transfer 
subprocess overlaps in time with mapping, potentially altering the balance in the 
constraint satisfaction network and affecting the correspondences that remain to 
be promoted. 

More concretely, the driver-T secretaries could identify whether they are 
unmapped or not by a constraint propagation mechanism (e.g. Waltz, 1975). 
Commitment in one place (in the form of a winner promotion) propagates to 
other places. Consider the example in Figure 7.1.1. 

water-2

T-of-w-2

plate-1

T-of-p-2

high-T-2

T-of-w-1

water-1

high-T-1

htsrc-is-hot

high-T

heat-src

 
Figure 7.1.1. The driver-M coalition (to the right) has established 

four hypotheses (diamonds) with the driver-T coalition (in the 
middle). A general proposition waits in the semantic memory 
(to the left) and could be used for skolemization. See text for 
details. 
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Figure 7.1.1. illustrates a fragment of the network at the moment when the 
driver-M coalition (to the right) has established several hypotheses with the 
recipient coalition (in the middle). Note that two hypotheses compete for the 
agent T-of-w-1. The secretary of the latter is authorized to promote one of 
them as winner. Suppose the hypothesis T-of-w-1<-->T-of-w-2 is the 
winner (due to structural and semantic pressures in the CSN as both proposi-
tions involve water). When it is promoted, the rival hypothesis T-of-w-1<--
>T-of-p-2 becomes a loser. It notifies the secretary of T-of-p-2 about this. 
The latter agent belongs to the recipient situation (in the middle). This same situ-
ation, however, is driver-T at the same time. As such, it checks whether it has at 
least one non-loser hypothesis on its record. When T-of-w-1<- ->T-of-p-
2 becomes a loser, the secretary detects that T-of-p-2 is unmapped. 

Driver-T secretaries are authorized to trigger the skolemization mechanism 
(just as driver-M secretaries are). Thus, the general proposition that the 
temperature of heat-sources is high could be used to augment the driver-M situ-
ation. This could be done in the following way: The agent T-of-p-2, having 
missed the chance to map to T-of-w-1, now takes the initiative and issues a 
marker. (Note that it acts as a driver at this moment.) As described in section 
5.3., this marker goes to the ‘parent concept’ temperature-of. It intersects 
there with the marker issued from the general proposition htsrc-is-hot. The 
marker intersection leads to a construction of a new hypothesis agent: T-of-p-
2<-->htsrc-is-hot. The symbolic processor of this new agent could now 
carry out the skolemization routines (section 5.7.) and augment the description of 
the ‘other’ situation. As this particular instantiation of the skolemization mechan-
ism has been triggered by the driver-T situation, the new Skolem instances will 
be added to situation driver-M. (Note that the latter acts as a recipient with 
respect to driver-T.) 

The skolemization mechanism will re-use the agent high-T-1 in the 
recipient. As the concept agent heat-source  has received no marker from 
the came coalition, a new Skolem instance will be created and affiliated to the 
episode shown to the right in Figure 7.1.1. Suppose the name of this new agent 
is sk-htsrc-1. Finally, a Skolem proposition will be created. It binds sk-
htsrc-1 and high-T-1 as arguments of a relation temperature-of. Let 
the name of this latter proposition is sk-T-of-1. Figure 7.1.2. shows the new 
configuration. 

The new agents sk-htsrc-1 and sk-T-of-1 affiliate to the driver-M co-
alition. In this way, the description of the target problem is augmented with a heat 
source. The new agents now take the initiative and issue markers. These 
markers will create the hypotheses sk-htsrc-1<-->plate-2 and sk-T-
of-1<-->T-of-p-2. Hence, plate-2 and T-of-p-2 are not unmapped 
any more. After the rating mechanism does its job, the new hypotheses will be 
promoted as winners. In particular, the hypothesis sk-T-of-1<-->T-of-p-2 
will eliminate the general hypothesis T-of-p-2<-->htsrc-is-hot that has 
carried out the skolemization process. 
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water-2

T-of-w-2

plate-1

T-of-p-2

high-T-2

T-of-w-1

water-1

high-T-1

htsrc-is-hot

high-T

heat-src

sk-T-of-1

sk-htsrc-1

 
Figure 7.1.2. State of the network after the skolemization mechan-

ism has added two new Skolem agents to the  driver-M coali-
tion introduced in Figure 7.1.1. The general-hypothesis agent 
that has carried out the skolemization is depicted by a white 
diamond. It will be eliminated when the new Skolem instances 
create hypotheses of their own. See text for details. 

This example suggests that the existing AMBR mechanisms can be useful 
not only for the processes of analog access and mapping but for the transfer 
process too. The utility of the mechanisms of rating, marker passing, and 
skolemization is clear from the example. The other mechanisms are potentially 
useful too. The spreading activation is a key mechanism for estimating 
relevance, and such estimates will surely be needed for the selection of 
candidates for transfer. The constraint satisfaction is also useful when there is a 
need for selecting one option among alternatives. 

Considerations of this kind make us believe that the AMBR model is open-
ended enough and its functionality could be extended in the direction of 
analogical transfer. Moreover, we hope that this could be done without giving up 
the properties of the current version. Analog transfer could be done in a dynamic 
emergent way over decentralized representations. It could run in parallel with the 
subprocesses of mapping and access. 

7.2. Possibilities for Perception 

This section suggests how AMBR could be extended in the direction of high-
level perception. As argued by Hofstadter (1984, 1995) and Chalmers, French, 
& Hofstadter (1992), the process of building representations is a crucial part of 
analogy-making. The same authors defend the methodological utility of micro-
domains for research on high-level perception. Micro-domains allow the model 
to focus on building structured representations instead of dealing with low-level 
details such as filtering noise from images. 
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One such micro-domain that could be used in the research on DUAL and 
AMBR is the so-called TEXTSCREEN. It is based on an imaginary text processing 
program. TEXTSCREEN is deliberately simplified — there is  plain text over a 
limited matrix of screen positions. There are objects like characters, marked 
areas, etc. The characters can be grouped in words, lines, paragraphs, columns, 
etc. Most of the objects are directly visible on the screen where they tend to form 
regular rectangular patterns. 

The objects have attributes such as long and vertical. There are also a 
number of relations such as left-of, part-of, aligned-with, etc. Finally, 
there are various actions (or commands) to navigate through the text, to insert, 
delete, or move objects, and mark portions of text and thus form aggregate units 
for subsequent manipulation. 

This material is rich enough to allow various configurations on the screen 
(see Figure 7.2.1). A model that operates in this environment is presented with a 
situation which has some defect somewhere on the screen and the task of the 
system is to locate the defect and correct it. To that end, the model can use 
previous situations (with solutions) as source analogs. 

 

Figure 7.2.1. Sample problem in TEXTSCREEN. 

Visual perception has much to do with space. Even in a simplified two-
dimensional micro -world like TEXTSCREEN spatial properties, rela tions, and 
configurations are all important. This characteristic feature of the environment 
must be reflected somehow in the cognitive archi tecture DUAL. The main network 
cannot meet this requirement because it lacks spatial organization1. Therefore, 
we plan to augment the archi tecture with a large-scale structure having explicit 
spatial organization — the visual array (VA). 

As everything in DUAL, the visual array consists of agents. The defining 
characteristic of the array is that the agents are arranged in a rectangular matrix. 
Each agent in the array is associated with a particular position on TEXTSCREEN 
and can ‘see’ whether the cell is empty or not. Thus the VA is a mediator 
between two different worlds — the external environment of TEXTSCREEN and the 
internal representations in the main network. The defining principle of 
TEXTSCREEN is physical location. On the other hand, the defining principle of the 
network is interconnectivity. In the visual array these two principles meet — the 
visual agents have both physical locations and links to other agents. For 
                                                 
1  There is a notion of neighborhood in the network but it is not related to spatial proximity. 
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instance, each agent is linked to the agents in the four neighboring cells. It can 
interact with them, send them symbols and activation, etc. 

There are other perceptual agents that are connected to a whole row or 
column of the agents in the VA. These agents can detect lines, lines with defects, 
etc. When they locate an object in their receptive field, they create a new 
temporary agent in the main network that represents this external object. Other 
specialized perceptual agents combine lines in regions, identify various spatial 
relations between them, etc. They build new agents in the network to represent 
these  regions and relations. Still other agents group things together or parse a 
complex object into parts. Each perceptual agent works at individual speed 
depending on its activation level. The activation in turns reflects two kinds of 
influences: bottom-up (from the VA) and top-down (from the ‘parent concept’ in 
the network). 

The visual array is a source of activation. It will replace the input node of the 
current version of DUAL and AMBR. Instead of hand-coding the description of the 
scene and attaching it to the input list, the model should be able to build the rep-
resentation itself. It would be built agent by agent. Each new agent enters the 
working memory, sends activation to its respective concept agent, and emits a 
marker to trigger the mechanisms for finding correspondences. As the 
simulation experiments on order effects have demonstrated (section 6.4), AMBR 
is capable to handle target problems that are presented over the course of time. 
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CHAPTER VIII 

CONCLUSION 

8.1. Overview of the Thesis 

This thesis presents AMBR3 — a dynamic emergent integrated model of 
analogical access and mapping based on decentralized representations of situ-
ations. It describes in detail the knowledge structures and computational mech-
anisms used in the model. The behavior of the model is illustrated by many 
examples, diagrams, and transcripts of actual runs of the computer 
implementation of the model. The thesis reports the results of various simulation 
experiments involving more than 1,200 runs of the program on different target 
problems. AMBR is compared with a selection of other models and is discussed 
in the light of the studies of human analogy-making. 

AMBR is an emergent and decentralized model. It consists of a population of 
small entities called DUAL agents. These agents are the ingredients of the DUAL 
cognitive architecture which is the foundation of AMBR. They represent all the 
knowledge and carry out all the processing in the architecture. There is no central 
executive that controls the operation of the system as a whole. Instead, each 
agent works locally and performs its simple specific task in close interaction with 
its immediate neighbors. The global behavior of the model emerges of the coor-
dinated effort of these asynchronous local activities. 

AMBR applies the same approach to the phenomena it is intended to model. 
The subprocesses of analogy-making are explained in terms of coordinated 
mechanisms. The main intuition behind the research reported here is that there 
is no ‘analogy machine’ that does analogies according to some fixed centralized 
algorithm. Instead, analogy is an emergent product of the work of general cogni-
tive mechanisms. The thesis tries to demonstrate that such approach is feasible. 
Thus, analog access is based on the mechanism of spreading activation which 
serves a range of other purposes in the cognitive archi tecture. The constraint 
satisfaction mechanism is used for finding correspondences in the model but the 
same mechanism can apply to various other tasks such as perception and 
decision making. 

AMBR representations of episodes are decentralized. The model does not 
maintain data structures listing the elements that belong to each situation. 
Instead, each situation is represented by a coalition of agents. This allows for 
greater flexibility of the representations. New elements can be added when 
necessary. The skolemization mechanism can augment the description of a 
given episode based on general semantic information. In the same time, 
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elements that have been needed in the past and potentially belong to the 
description of the episode stay out of the working memory when they are 
irrelevant for the problem being solved. Thus the model is capable to re-
represent a situation both by addition and omission of elements. Chapter V 
demonstrates this on a concrete example. 

The theme of integration is central for AMBR research. The model 
conceptualizes the components of analogy-making not as sequential ‘stages’ but 
as subprocesses that run in parallel and interact. The version reported in this 
thesis integrates the subprocesses of analog access and mapping. A case 
study reported in Chapter VI illustrates an interaction of this kind. Other 
simulation experiments from the same chapter also demonstrate various 
aspects of these interactions. Chapter VII suggests possibilities for modeling the 
subprocesses of transfer and perception. It is argued that they could be added to 
the current version of the model without forcing radical reconsideration of the 
existing mechanisms. 

The computational dynamics is a characteristic feature of the architecture 
DUAL and, consequently, of the model built on top of it. Each DUAL agent works 
at its own speed that varies dynamically as the activation level of the agent vary. 
Thus, more relevant agents work faster and contribute more to the overall 
behavior of the system than do less relevant (and hence less active) ones. In 
addition, the topology of the AMBR network is constantly changing as new nodes 
and links are created while others are removed. This dynamic emergent com-
putation provides for flexibility and efficiency at the same time. 

8.2. Contributions of This Work 

The research reported in this thesis has made several extensions and 
improvements of the AMBR model and DUAL archi tecture with respect to the 
earlier specification (Kokinov, 1994a). In our view, the major contributions are: 

From AMBR1 (Kokinov, 1994a) to AMBR2 (Petrov, 1997): 

• Introduction of the energetic analogy and the mechanism of con-
sumptions for specifying the exact relationship between the activation level of a 
DUAL agent and the speed of its symbolic processor. 

• Introduction of the notion of coalitions and the intermediate level of 
description of the archi tecture (the meso-level). The conceptual apparatus of co-
alitions is an important tool for developing and communicating the ideas about 
emergent computation, decentralized representations, etc. 

• Transition from centralized to decentralized representation of situations 
in AMBR. In turn, this led to improvements in the marker passing, structure corre-
spondence, and constraint satisfaction mechanisms. It is also an important factor 
for the integration of the different subprocesses of analogy-making in the model. 
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• Introduction of secretaries for the purposes of incremental construction of 
the constraint satisfaction network. The presence of secretaries also prepares 
the ground for the rating mechanism in AMBR3. 

• Disclosing the deficiencies of the activation function used in AMBR1 and 
replacing it with a more appropriate one. Detailed mathematical analysis of 
these functions. 

• Developing, testing, and documenting a portable computer imple-
mentation of the architecture and the model. The program has been tested under 
two platforms: Allegro Common Lisp (Windows), and Carnegie Mellon Common 
Lisp (Unix). 

• Enlarging the knowledge base and performing simulation experiments 
with AMBR2. 

From AMBR2 to AMBR3: 

• Introduction of the mechanisms for rating and promotion. The authorized 
secretaries in AMBR3 monitor the activation levels of the hypothesis registered at 
them. Secretaries promote winners and eliminate losers when appropriate. Thus 
the outcome of the mapping process is available within the model itself; there is 
no need for an external observer to read out the answer from the activation 
pattern in the constraint satisfaction network. In addition, loser elimination 
reduces the size of the CSN and opens new possibilities for incremental 
processing as discussed in subsection 5.6.1.3. The rating mechanism also 
performs ballotages to prevent implausible blendings and trigger the 
skolemization mechanism. The life cycle of hypothesis agents is elaborated. 

• Introduction of the skolemization mechanism. In this way, general 
semantic information can be used to augment the descriptions of episodes upon 
necessity. This is the first attempt for re-representation of past episodes in 
analogy-making. The skolemization mechanism would also be very useful for the 
transfer process in analogy-making as discussed in Chapter VII. 

• Extending the structure correspondence mechanism with abilities for 
weak structure correspondence. It improves the connectivity of the CSN by 
creating new links (but not new hypothesis agents). Combined with the 
differential link weighting adopted in AMBR3, this improves the structural 
constraint on analogical mapping. 

• Elaborating the description of the episodes in the knowledge base and 
addition of new episodes and concepts. The total number of agents is more than 
doubled with respect to AMBR2. There is richer representation of the causal 
structure of each base situation. 

• The simulation experiments with AMBR3 reported in this thesis involve 
more than 1,200 runs of the program and show the behavior of the model in 
detail. The interaction between analog access and mapping is explored. An 
experiment on order effects shows that AMBR3 is sensitive to the order of pre -
sentation of the target elements. 

• All new mechanisms are implemented in the computer program. There 
are also a number of technical improvements of the old implementation. (For 
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example, the routines performed by the symbolic processors of AMBR2 agents 
were interpreted. In AMBR3 they are compiled.) 

8.3. Suggestions for Future Research 

Each end is a new beginning. 
(Bulgarian proverb) 

As stated repeatedly in this thesis, AMBR3 is but an intermediate stage in a 
long-term research program. There are many ways in which this research can be 
continued. Some of them are suggested in this final section. 

To begin with, much more experimentation could (and should) be done with 
the existing version of the model. There are a number of interesting effects that 
are within its scope but have not been demonstrated in rigorous simulation 
experiments. For example, AMBR3 could map propositions with different number 
of arguments, map an object to a relation, etc. The experiments on priming and 
context effects performed by Kokinov (1994a) could also be replicated and 
extended. The model should be tested on new kinds of problems in different 
domains. Of particular interest is whether the model will scale up to larger 
memory sizes. The sensitivity and robustness of the model for different values of 
its various parameters is another issue that has not been covered in the present 
thesis. 

Another possibility for research is to design and implement new computa-
tional mechanisms and extend the functionality of AMBR. The subprocess of 
transfer seems within closest reach. The mechanisms of constraint propagation, 
switching the base as driver, and skolemization from base to target outlined in 
Chapter VII provide a starting point. 

A major research direction is to add perceptual capabilities to DUAL and 
AMBR. This involves the visual array mentioned in Chapter VII and the 
TEXTSCREEN micro-domain. The integration of the perceptual mechanisms with 
the existing computational machinery is a very challenging and intriguing topic. 
Another research direction of comparable complexity and import is to add 
learning mechanisms to the archi tecture. 

The research on AMBR involves psychological experimentation too. For 
instance, the order effect on access presented in sections 5.2.4. and 6.4. is a 
prediction of the model which could be tested empirically. 
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APPENDIX A 

FULL REPRESENTATION OF A SITUATION 
This appendix presents the unabridged representation of one of the twelve 

episodes in the current long-term memory. It is taken directly from the Lisp 
sources that load the knowledge base of AMBR. 

The file consists of defagent macros. Each macro defines an agent and 
fills its slots. The overall syntax is: 

(defagent agent-name agent-type 
 [documentation-string] 
 {G-slot-definition}* 
 {S-slot-definition}* 
   ) 

Most slot fillers are references to other agents. Each reference is also a link 
and has a label and a weight (see subsection 3.1.3.1). When no explicit weight is 
given, it defaults to 1.0. 

 
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: AMBR -*- 
 
;;; FILE:       AMBR/kb/episodic/b_WTP.lsp 
;;; VERSION:    3.0.0   ; see AMBR/KB/VERSION.LSP 
;;; PURPOSE:    Base situation WTP -- 'Water in a Teapot on a hot Plate.' 
;;; DEPENDS-ON: AMBR, AMBR/kb/semantic/*.lsp 
;;; PROGRAMMER: Alexander Alexandrov Petrov   (apetrov@cogs.nbu.acad.bg) 
;;; VARIANTS:   none 
;;; CREATED:    30-05-98 [3.0.0]  Elaboration of SIT-WTP from old LTM.LSP. 
;;; UPDATED:    18-06-98  Removed IS-GOAL and RESULT propositns. Wght adjstmt 
;;;                       CAUSE consequents are propositions now, not states. 
;;;                       T-OF-WTP-W1 and T-OF-WTP-W2 coalesced together. 
;;; UPDATED:    ... 
 
         ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
         ;;;;;;;;         SITUATION  W T P           ;;;;;;;; 
         ;;;;;;;;   Water in a Teapot on a Plate     ;;;;;;;; 
         ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 
(in-package "AMBR") 
 
;;;;;;;;;   Base situation WTP   ;;;;;;;;;;; 
;;;; 
;;;; There is some water in a teapot on a hot-plate. 
;;;; The plate is hot.  The teapot is made of metal 
;;;; and its color is black. 
;;;; 
;;;; The goal is to heat the water. 
;;;; 
;;;; The result is that the teapot becomes hot because 
;;;; it is on the hot plate.  In turn, this causes the 
;;;; water to become hot because it is in the teapot. 
;;;; 
;;;;;;;;; 
;;;; Related situations: 
;;;;  + GP  -- Glass on a hot Plate breaks. 
;;;;  + IHC -- Imm.Heater in a Cup heats water. 
;;;;  + ... 
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;;;;  * HM1 -- How to Heat Milk in a Teapot? 
;;;;  * ... 
 
 
 
 
;;;;;;;  Situation-agent 
;; 
 
(defagent   sit-WTP    instance-agent 
  "Water in a Teapot on a hot Plate." 
  :type      (:instance :situation) 
  :inst-of   (situation 0.1) 
  :a-link    ((hplate-WTP 0.5) 
              (high-T-WTP 0.5) 
              (T-of-WTP-w 1.0) ) 
) 
 
;;;;;;;  Participating objects 
;; 
;;  water-WTP  :  (inst-of water) 
;;  tpot-WTP   :  (inst-of teapot) 
;;  hplate-WTP :  (inst-of hot-plate) 
;; 
 
(defagent   water-WTP    instance-agent 
  :type       (:instance  :object) 
  :modality   (:init :goal) 
  :situation  (sit-WTP 0.2) 
  :inst-of    water 
  :c-coref    (((in-WTP . :slot1) 0.3) 
               ((T-of-WTP-w  . :slot1) 1.0) 
               ((goalst-WTP  . :slot3) 0.2) 
               ((interst-WTP . :slot3) 0.1) ) 
  :a-link     (initst-WTP-1 0.1) 
) 
 
(defagent   tpot-WTP    instance-agent 
  :type       (:instance  :object) 
  :modality   :init 
  :situation  (sit-WTP 0.2) 
  :inst-of    teapot 
  :c-coref    (((in-WTP . :slot2) 0.25) 
               ((on-WTP . :slot2) 0.25) 
               ((T-of-WTP-t   . :slot1) 0.25) 
               ((made-of-WTP  . :slot1) 0.10) 
               ((color-of-WTP . :slot1) 0.10) 
               ((initst-WTP-2 . :slot3) 0.10) ) 
  :a-link     (initst-WTP-1 0.1) 
  :slot1   
    :type      :relation 
    :inst-of   (teapot . :slot2) 
    :c-coref   (made-of-WTP 0.2) 
    :a-link    (mmetal-WTP  0.2) 
  :slot2   
    :type      :relation 
    :inst-of   (teapot . :slot2) 
    :c-coref   (color-of-WTP 0.1) 
    :a-link    (black-WTP    0.1) 
) 
 
(defagent   hplate-WTP    instance-agent 
  :type       (:instance  :object) 
  :modality   :init 
  :situation  (sit-WTP 0.3) 
  :inst-of    hot-plate 
  :c-coref    (((T-of-WTP-p . :slot1) 0.75) 
               ((on-WTP . :slot1)     0.25) ) 
  :a-link     ((high-T-WTP   0.5) 
               (initst-WTP-1 0.1) ) 
) 
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;;;;;;;  Initial relations 
;; 
;;  in-WTP       : (in water-WTP tpot-WTP) 
;;  on-WTP       : (on hplate-WTP tpot-WTP) 
;;  T-of-WTP-p   : (temperature-of hplate-WTP high-T-WTP) 
;;  made-of-WTP  : (made-of  tpot-WTP mmetal-WTP) 
;;  color-of-WTP : (color-of tpot-WTP black-WTP) 
;; 
 
(defagent   in-WTP    instance-agent 
  "(in water-WTP tpot-WTP)" 
  :type       (:instance  :relation) 
  :modality   :init 
  :situation  (sit-WTP 0.2) 
  :inst-of    in 
  :c-coref    (((initst-WTP-1 . :slot4) 0.2) 
               ((interst-WTP  . :slot2) 0.1) ) 
  :slot1 
    :type       :aspect 
    :inst-of    (in . :slot1) 
    :c-coref    water-WTP 
  :slot2 
    :type       :aspect 
    :inst-of    (in . :slot2) 
    :c-coref    tpot-WTP 
) 
 
(defagent   on-WTP    instance-agent 
  "(on hplate-WTP tpot-WTP)" 
  :type       (:instance  :relation) 
  :modality   :init 
  :situation  (sit-WTP 0.2) 
  :inst-of    on 
  :c-coref    (((initst-WTP-1 . :slot3) 0.2) 
               ((initst-WTP-2 . :slot2) 0.1) ) 
  :a-link     (T-of-WTP-t 0.1) 
  :slot1 
    :type       :aspect 
    :inst-of    (on . :slot1) 
    :c-coref    hplate-WTP 
  :slot2 
    :type       :aspect 
    :inst-of    (on . :slot2) 
    :c-coref    tpot-WTP 
) 
 
(defagent   T-of-WTP-p    instance-agent 
  "(temperature-of hplate-WTP high-T-WTP)" 
  :type       (:instance  :relation) 
  :modality   :init 
  :situation  (sit-WTP 0.2) 
  :inst-of    temperature-of 
  :c-coref    (((initst-WTP-1 . :slot1) 0.3) 
               ((initst-WTP-2 . :slot1) 0.1) ) 
  :a-link     ((T-of-WTP-t  0.1) 
               (T-of-WTP-w  0.1) 
               (cause-WTP-i 0.1) ) 
  :slot1 
    :type       :aspect 
    :inst-of    (temperature-of . :slot1) 
    :c-coref    hplate-WTP 
  :slot2 
    :type       :aspect 
    :inst-of    (temperature-of . :slot2) 
    :c-coref    high-T-WTP 
) 
(defagent  high-T-WTP   instance-agent 
  :type       (:instance  :object) 
  :modality   (:init :goal :result) 
  :situation  (sit-WTP 0.3) 
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  :inst-of    high-temp 
  :c-coref    (((T-of-WTP-p   . :slot2) 0.5) 
               ((T-of-WTP-t   . :slot2) 0.2) 
               ((T-of-WTP-w   . :slot2) 0.5) 
               ((initst-WTP-1 . :slot2) 0.1) 
               ((goalst-WTP   . :slot2) 0.1) ) 
  :a-link     (hplate-WTP 0.3) 
) 
 
(defagent   made-of-WTP    instance-agent 
  "(made-of tpot-WTP mmetal-WTP)" 
  :type       (:instance  :relation) 
  :modality   :init 
  :situation  (sit-WTP 0.2) 
  :inst-of    made-of 
  :c-coref    (tpot-WTP . :slot1) 
  :a-link     (T-of-WTP-t 0.3) 
  :slot1 
    :type       :aspect 
    :inst-of    (made-of . :slot1) 
    :c-coref    tpot-WTP 
  :slot2 
    :type       :aspect 
    :inst-of    (made-of . :slot2) 
    :c-coref    mmetal-WTP 
) 
(defagent  mmetal-WTP  instance-agent 
  :type       (:instance  :object) 
  :modality   :init 
  :situation  (sit-WTP 0.2) 
  :inst-of    material-metal 
  :c-coref    (made-of-WTP  . :slot2) 
  :a-link     (tpot-WTP 1.0) 
) 
 
(defagent   color-of-WTP    instance-agent 
  "(color-of tpot-WTP black-WTP)" 
  :type       (:instance  :relation) 
  :modality   :init 
  :situation  (sit-WTP 0.2) 
  :inst-of    color-of 
  :c-coref    (tpot-WTP . :slot2) 
  :slot1 
    :type     :aspect 
    :inst-of  (color-of . :slot1) 
    :c-coref  tpot-WTP 
  :slot2 
    :type     :aspect 
    :inst-of  (color-of . :slot2) 
    :c-coref  black-WTP 
) 
(defagent   black-WTP  instance-agent 
  :type       (:instance  :object) 
  :modality   :init 
  :situation  (sit-WTP 0.2) 
  :inst-of    black 
  :c-coref    (color-of-WTP . :slot2) 
  :a-link     (tpot-WTP 1.0) 
) 
 
 
;;;;;;;  Initial states 
;; 
;;  initst-WTP-1  -to-reach->  goalst-WTP 
;;  initst-WTP-1  -follows->   endst-WTP 
;;  initst-WTP-2  --cause-->   interst-WTP 
;; 
;;  initst-WTP-1  :  (init-state T-of-WTP-p high-T-WTP on-WTP in-WTP) 
;;  initst-WTP-2  :  (init-state T-of-WTP-p on-WTP tpot-WTP) 
;; 
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(defagent   initst-WTP-1  instance-agent 
  "initst-WTP-1  -to-reach->  goalst-WTP" 
  :type       (:instance :situation) 
  :modality   :init 
  :situation  (sit-WTP 0.2) 
  :inst-of    init-state 
  :c-coref    ((to-reach-WTP . :slot1) 
               (follows-WTP  . :slot1) ) 
  :a-link     ((goalst-WTP   1.0) 
               (initst-WTP-2 0.2) 
               (water-WTP    0.2) 
               (tpot-WTP     0.2) 
               (hplate-WTP   0.2) ) 
  :slot1 
    :type       :relation 
    :inst-of    (init-state . :slot2) 
    :c-coref    T-of-WTP-p 
  :slot2 
    :type       :aspect 
    :inst-of    (init-state . :slot1) 
    :c-coref    high-T-WTP 
  :slot3 
    :type       :relation 
    :inst-of    (init-state . :slot2) 
    :c-coref    on-WTP 
  :slot4 
    :type       :relation 
    :inst-of    (init-state . :slot2) 
    :c-coref    in-WTP 
) 
 
(defagent   initst-WTP-2  instance-agent 
  "initst-WTP-2  --cause-->  interst-WTP" 
  :type       (:instance :situation) 
  :modality   :init 
  :situation  (sit-WTP 0.2) 
  :inst-of    init-state 
  :c-coref    (cause-WTP-i . :slot1) 
  :a-link     ((interst-WTP  1.0) 
               (initst-WTP-1 0.3) 
               (hplate-WTP   0.3) ) 
  :slot1 
    :type       :relation 
    :inst-of    (init-state . :slot2) 
    :c-coref    T-of-WTP-p 
  :slot2 
    :type       :relation 
    :inst-of    (init-state . :slot2) 
    :c-coref    on-WTP 
  :slot3 
    :type       :aspect 
    :inst-of    (init-state . :slot1) 
    :c-coref    tpot-WTP 
) 
 
 
;;;;;;;  Goal state 
;; 
;;  goalst-WTP  <-to-reach-  initst-WTP-1 
;;  goalst-WTP   :  (goal-state T-of-WTP-w high-T-WTP water-WTP) 
;; 
;;  T-of-WTP-w   :  (temperature-of water-WTP high-T-WTP) 
;;  to-reach-WTP :  (to-reach initst-WTP-1 goalst-WTP) 
;; 
 
(defagent   T-of-WTP-w    instance-agent 
  "(temperature-of water-WTP high-T-WTP)" 
  :type       (:instance  :relation) 
  :modality   (:GOAL   :intend-true 
               :RESULT :true ) 
  :situation  (sit-WTP 0.3) 
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  :inst-of    temperature-of 
  :c-coref    (((goalst-WTP  . :slot1) 0.2) 
               ((endst-WTP   . :slot2) 0.2) 
               ((cause-WTP-e . :slot2) 0.2) ) 
  :a-link     ((T-of-WTP-p 0.1) 
               (T-of-WTP-t 0.1) 
               (hplate-WTP 0.1) ) 
  :slot1 
    :type       :aspect 
    :inst-of    (temperature-of . :slot1) 
    :c-coref    water-WTP 
  :slot2 
    :type       :aspect 
    :inst-of    (temperature-of . :slot2) 
    :c-coref    high-T-WTP 
) 
 
(defagent   goalst-WTP    instance-agent 
  "goalst-WTP  <-to-reach-  initst-WTP-1" 
  :type       (:instance :situation) 
  :modality   :goal 
  :situation  (sit-WTP 0.2) 
  :inst-of    goal-state 
  :c-coref    (to-reach-WTP . :slot2) 
  :a-link     ((initst-WTP-1 1.0) 
               (endst-WTP    0.5) ) 
  :slot1 
    :type       :relation 
    :inst-of    (goal-state . :slot2) 
    :c-coref    T-of-WTP-w 
  :slot2 
    :type       :aspect 
    :inst-of    (goal-state . :slot1) 
    :c-coref    high-T-WTP 
  :slot3 
    :type       :aspect 
    :inst-of    (goal-state . :slot1) 
    :c-coref    water-WTP 
) 
 
(defagent   to-reach-WTP    instance-agent 
  "(to-reach initst-WTP-1 goalst-WTP)" 
  :type       (:instance  :relation) 
  :modality   :goal 
  :situation  (sit-WTP 0.2) 
  :inst-of    to-reach 
  :a-link     ((follows-WTP 0.5) 
               (cause-WTP-i 0.1) 
               (cause-WTP-e 0.2) ) 
  :slot1 
    :type       :aspect 
    :inst-of    (to-reach . :slot1) 
    :c-coref    initst-WTP-1 
  :slot2 
    :type       :aspect 
    :inst-of    (to-reach . :slot2) 
    :c-coref    goalst-WTP 
) 
 
 
;;;;;;;  Intermediary state 
;; 
;;  interst-WTP  <-cause--  initst-WTP-2 
;;  interst-WTP  --cause->  endst-WTP 
;;  interst-WTP   :  (inter-state T-of-WTP-t in-WTP water-WTP) 
;; 
;;  T-of-WTP-t    :  (temperature-of tpot-WTP high-T-WTP) 
;;  cause-WTP-i   :  (cause initst-WTP-2 T-of-WTP-t) 
;; 
 
(defagent   T-of-WTP-t    instance-agent 
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  "(temperature-of tpot-WTP high-T-WTP)" 
  :type       (:instance  :relation) 
  :modality   :result 
  :situation  (sit-WTP 0.2) 
  :inst-of    temperature-of 
  :c-coref    (((cause-WTP-i . :slot2) 0.5) 
               ((interst-WTP . :slot1) 0.2) 
               ((endst-WTP   . :slot1) 0.2) ) 
  :a-link     ((T-of-WTP-p 0.3) 
               (T-of-WTP-w 0.3) 
               (hplate-WTP 0.1) ) 
  :slot1 
    :type      :aspect 
    :inst-of   (temperature-of . :slot1) 
    :c-coref   tpot-WTP 
  :slot2 
    :type      :aspect 
    :inst-of   (temperature-of . :slot2) 
    :c-coref   high-T-WTP 
) 
 
(defagent   interst-WTP    instance-agent 
  "interst-WTP  <-cause-  initst-WTP-2" 
  :type       (:instance :situation) 
  :modality   :result 
  :situation  (sit-WTP 0.2) 
  :inst-of    inter-state 
  :c-coref    (cause-WTP-e . :slot1) 
  :a-link     ((endst-WTP    0.6) 
               (initst-WTP-2 0.4) ) 
  :slot1 
    :type       :relation 
    :inst-of    (inter-state . :slot2) 
    :c-coref    T-of-WTP-t 
  :slot2 
    :type       :relation 
    :inst-of    (inter-state . :slot2) 
    :c-coref    in-WTP 
  :slot3 
    :type       :aspect 
    :inst-of    (inter-state . :slot1) 
    :c-coref    water-WTP 
) 
 
(defagent   cause-WTP-i   instance-agent 
  "(cause initst-WTP-2 T-of-WTP-t)" 
  :type       (:instance  :relation) 
  :modality   :result 
  :situation  (sit-WTP 0.2) 
  :inst-of    cause 
  :a-link     ((interst-WTP  1.0) 
               (cause-WTP-e  0.5) 
               (follows-WTP  0.3) 
               (to-reach-WTP 0.2) ) 
  :slot1 
    :type       :aspect 
    :inst-of    (cause . :slot1) 
    :c-coref    initst-WTP-2 
  :slot2 
    :type       :aspect 
    :inst-of    (cause . :slot2) 
    :c-coref    T-of-WTP-t 
) 
 
 
;;;;;;;  End state 
;; 
;;  endst-WTP  <-follows-  initst-WTP-1 
;;  endst-WTP     :  (end-state T-of-WTP-t T-of-WTP-w) 
;; 
;;  follows-WTP   :  (follows initst-WTP-1 endst-WTP) 
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;;  cause-WTP-e   :  (cause interst-WTP T-of-WTP-w) 
;; 
 
(defagent   endst-WTP    instance-agent 
  "endst-WTP  <-follows-  initst-WTP-1" 
  :type       (:instance :situation) 
  :modality   :result 
  :situation  (sit-WTP 0.2) 
  :inst-of    end-state 
  :c-coref    (follows-WTP . :slot2) 
  :a-link     ((interst-WTP 0.1) 
               (goalst-WTP  0.2) ) 
  :slot1 
    :type       :relation 
    :inst-of    (end-state . :slot2) 
    :c-coref    (T-of-WTP-t 0.5) 
  :slot2 
    :type       :relation 
    :inst-of    (end-state . :slot2) 
    :c-coref    T-of-WTP-w 
) 
 
(defagent   follows-WTP  instance-agent 
  "(follows initst-WTP-1 endst-WTP)" 
  :type       (:instance  :relation) 
  :modality   :result 
  :situation  (sit-WTP 0.2) 
  :inst-of    follows 
  :a-link     ((to-reach-WTP 0.5) 
               (cause-WTP-i  0.2) ) 
  :slot1 
    :type       :aspect 
    :inst-of    (follows . :slot1) 
    :c-coref    initst-WTP-1 
  :slot2 
    :type       :aspect 
    :inst-of    (follows . :slot2) 
    :c-coref    endst-WTP 
) 
 
(defagent   cause-WTP-e    instance-agent 
  "(cause interst-WTP T-of-WTP-w)" 
  :type       (:instance  :relation) 
  :modality   :result 
  :situation  (sit-WTP 0.2) 
  :inst-of    cause 
  :a-link     ((endst-WTP    0.5) 
               (follows-WTP  0.3) 
               (cause-WTP-i  0.2) 
               (to-reach-WTP 0.1) ) 
  :slot1 
    :type       :aspect 
    :inst-of    (cause . :slot1) 
    :c-coref    interst-WTP 
  :slot2 
    :type       :aspect 
    :inst-of    (cause . :slot2) 
    :c-coref    T-of-WTP-w 
) 
 
 
;;;;;;  ---- Sanity check ---- ;;;;;; 
;; 
(check-for-unresolved-references) 
 
 
;;;;;;;;;;;;  ---  Appendix  ---  ;;;;;;;;;; 
;; 
;; The information below is not used by the model. 
;; It is for interface purposes only. 
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(defcoalition  sit-WTP 
  "Water in a Teapot on a hot Plate." 
  :head      sit-WTP                      ; 23 agents 
  :members   (sit-WTP 
              water-WTP     tpot-WTP      hplate-WTP 
              in-WTP        on-WTP 
              T-of-WTP-p    high-T-WTP 
              T-of-WTP-t    T-of-WTP-w 
              made-of-WTP   mmetal-WTP 
              color-of-WTP  black-WTP 
              initst-WTP-1  initst-WTP-2  interst-WTP 
              goalst-WTP    endst-WTP 
              to-reach-WTP  follows-WTP 
              cause-WTP-i   cause-WTP-e 
             )) 
 
(GENKB-template 
  :herald  "Base sit.WTP -- Water in a Teapot on a hot Plate, ver.3.0.0." 
  :templates '( 
    (water          (:instance (water-WTP    2)) 
                    (:a-link   (T-of-WTP-w  0.1)) ) 
    (teapot         (:instance (tpot-WTP     3)) ) 
    (hot-plate      (:instance (hplate-WTP   5)) 
                    (:a-link   (T-of-WTP-p  0.2)) ) 
    (temperature-of (:instance (T-of-WTP-w   3) (T-of-WTP-p 3)) 
                    (:a-link   (high-T-WTP  0.1)) ) 
    (high-temp      (:instance (high-T-WTP   5)) 
                    (:a-link   (hplate-WTP  0.2)) ) 
    (in             (:instance (in-WTP       1)) ) 
    (on             (:instance (on-WTP       1)) ) 
    (made-of        (:instance (made-of-WTP  1)) ) 
    (material-metal (:instance (mmetal-WTP   1)) ) 
    (color-of       (:instance (color-of-WTP 1)) ) 
    (black          (:instance (black-WTP    1)) ) 
)) 
 
 
;;;;;;;;  Propositional representaion 
;; 
;;  sit-WTP       :  (inst-of sit-WTP situation) 
;; 
;;  black-WTP     :  (inst-of black-WTP black) 
;;  cause-WTP-i   :  (cause initst-WTP-2 T-of-WTP-t) 
;;  cause-WTP-e   :  (cause interst-WTP  T-of-WTP-w) 
;;  color-of-WTP  :  (color-of tpot-WTP black-WTP) 
;;  endst-WTP     :  (end-state T-of-WTP-t T-of-WTP-w) 
;;  follows-WTP   :  (follows initst-WTP-1 endst-WTP) 
;;  goalst-WTP    :  (goal-state T-of-WTP-w high-T-WTP water-WTP) 
;;  high-T-WTP    :  (inst-of high-T-WTP high-temp) 
;;  hplate-WTP    :  (inst-of hplate-WTP hot-plate) 
;;  in-WTP        :  (in water-WTP tpot-WTP) 
;;  initst-WTP-1  :  (init-state T-of-WTP-p high-T-WTP on-WTP in-WTP) 
;;  initst-WTP-2  :  (init-state T-of-WTP-p on-WTP tpot-WTP) 
;;  interst-WTP   :  (inter-state T-of-WTP-t in-WTP water-WTP) 
;;  made-of-WTP   :  (made-of tpot-WTP mmetal-WTP) 
;;  mmetal-WTP    :  (inst-of mmetal-WTP material-metal) 
;;  on-WTP        :  (on tpot-WTP hplate-WTP) 
;;  T-of-WTP-p    :  (temperature-of hplate-WTP high-T-WTP) 
;;  T-of-WTP-t    :  (temperature-of tpot-WTP high-T-WTP) 
;;  T-of-WTP-w    :  (temperature-of water-WTP high-T-WTP) 
;;  to-reach-WTP  :  (to-reach initst-WTP-1 goalst-WTP) 
;;  tpot-WTP      :  (inst-of tpot-WTP teapot) 
;;  water-WTP     :  (inst-of water-WTP water) 
 
 
;;;;;;  End of file  AMBR/KB/EPISODIC/B_WTP.LSP 
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APPENDIX B 

PROPOSITIONAL DESCRIPTIONS OF ALL 
SITUATIONS 

This appendix presents simplified propositional descriptions of all situations 
involved in the simulation experiments reported in the thesis. They appear in the 
order they are introduced in Chapter VI: 12 base episodes + 10 target problems. 

Note that these are simplified representations only! The actual AMBR repre-
sentations are much more complex. Generally, each line below corresponds to a 
whole agent with several slots. See Appendix A for an actual representation and 
compare it with the first group below. 

 
;;;;;;  Base sit. WTP (Water in a Teapot on a Plate) 
 
  sit-WTP       :  (inst-of sit-WTP situation) 
 
  black-WTP     :  (inst-of black-WTP black) 
  cause-WTP-i   :  (cause initst-WTP-2 T-of-WTP-t) 
  cause-WTP-e   :  (cause interst-WTP  T-of-WTP-w) 
  color-of-WTP  :  (color-of tpot-WTP black-WTP) 
  endst-WTP     :  (end-state T-of-WTP-t T-of-WTP-w) 
  follows-WTP   :  (follows initst-WTP-1 endst-WTP) 
  goalst-WTP    :  (goal-state T-of-WTP-w high-T-WTP water-WTP) 
  high-T-WTP    :  (inst-of high-T-WTP high-temp) 
  hplate-WTP    :  (inst-of hplate-WTP hot-plate) 
  in-WTP        :  (in water-WTP tpot-WTP) 
  initst-WTP-1  :  (init-state T-of-WTP-p high-T-WTP on-WTP in-WTP) 
  initst-WTP-2  :  (init-state T-of-WTP-p on-WTP tpot-WTP) 
  interst-WTP   :  (inter-state T-of-WTP-t in-WTP water-WTP) 
  made-of-WTP   :  (made-of tpot-WTP mmetal-WTP) 
  mmetal-WTP    :  (inst-of mmetal-WTP material-metal) 
  on-WTP        :  (on tpot-WTP hplate-WTP) 
  T-of-WTP-p    :  (temperature-of hplate-WTP high-T-WTP) 
  T-of-WTP-t    :  (temperature-of tpot-WTP high-T-WTP) 
  T-of-WTP-w    :  (temperature-of water-WTP high-T-WTP) 
  to-reach-WTP  :  (to-reach initst-WTP-1 goalst-WTP) 
  tpot-WTP      :  (inst-of tpot-WTP teapot) 
  water-WTP     :  (inst-of water-WTP water) 
 
 
;;;;;;  Base sit. BF (Bowl on a Fire burns out) 
 
  sit-BF       :  (inst-of sit-BF situation) 
 
  bowl-BF      :  (inst-of bowl-BF bowl) 
  cause-BF-b   :  (cause initst-BF-2 is-burnt-BF) 
  cause-BF-d   :  (cause interst-BF  is-dissip-BF) 
  endst-BF     :  (end-state is-burnt-BF is-dissip-BF) 
  fire-BF      :  (inst-of fire-BF fire) 
  follows-BF   :  (follows initst-BF-1 endst-BF) 
  goalst-BF    :  (goal-state T-of-BF-w high-T-BF water-BF) 
  high-T-BF    :  (inst-of high-T-BF high-temp) 
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  in-BF        :  (in water-BF bowl-BF) 
  initst-BF-1  :  (init-state T-of-BF-f high-T-BF on-BF in-BF) 
  initst-BF-2  :  (init-state T-of-BF-f made-of-BF mwood-BF on-BF) 
  interst-BF   :  (inter-state is-burnt-BF in-BF bowl-BF) 
  is-burnt-BF  :  (is-burnt-out bowl-BF) 
  is-dissip-BF :  (is-dissipated water-BF) 
  made-of-BF   :  (made-of bowl-BF mwood-BF) 
  mwood-BF     :  (inst-of mwood-BF material-wood) 
  on-BF        :  (on fire-BF bowl-BF) 
  T-of-BF-f    :  (temperature-of fire-BF high-T-BF) 
  T-of-BF-w    :  (temperature-of water-BF high-T-BF) 
  to-reach-BF  :  (to-reach initst-BF-1 goalst-BF) 
  water-BF     :  (inst-of water-BF water) 
 
 
;;;;;;  Base sit. GP (Glass on a hot Plate breaks) 
 
  sit-GP       :  (inst-of sit-GP situation) 
 
  cause-GP-b   :  (cause initst-GP-2 is-broken-GP) 
  cause-GP-d   :  (cause interst-GP  is-dissip-GP) 
  endst-GP     :  (end-state is-broken-GP is-dissip-GP) 
  follows-GP   :  (follows initst-GP-1 endst-GP) 
  glass-GP     :  (inst-of glass-GP glass) 
  goalst-GP    :  (goal-state T-of-GP-w high-T-GP water-GP) 
  high-T-GP    :  (inst-of high-T-GP high-temp) 
  hplate-GP    :  (inst-of hplate-GP hot-plate) 
  in-GP        :  (in water-GP glass-GP) 
  initst-GP-1  :  (init-state T-of-GP-p high-T-GP on-GP in-GP) 
  initst-GP-2  :  (init-state T-of-GP-p made-of-GP mglass-GP on-GP) 
  interst-GP   :  (inter-state is-broken-GP in-GP glass-GP) 
  is-broken-GP :  (is-broken glass-GP) 
  is-dissip-GP :  (is-dissipated water-GP) 
  made-of-GP   :  (made-of glass-GP mglass-GP) 
  mglass-GP    :  (inst-of mglass-GP material-glass) 
  on-GP        :  (on hplate-GP glass-GP) 
  T-of-GP-p    :  (temperature-of hplate-GP high-T-GP) 
  T-of-GP-w    :  (temperature-of water-GP high-T-GP) 
  to-reach-GP  :  (to-reach initst-GP-1 goalst-GP) 
  water-GP     :  (inst-of water-GP water) 
 
 
;;;;;;  Base sit. IHC (Immersion Heater in a Cup with water) 
 
  sit-IHC       :  (inst-of sit-IHC situation) 
 
  cause-IHC     :  (cause initst-IHC T-of-IHC-w) 
  cup-IHC       :  (inst-of cup-IHC cup) 
  endst-IHC     :  (end-state T-of-IHC-w) 
  follows-IHC   :  (follows initst-IHC endst-IHC) 
  goalst-IHC    :  (goal-state T-of-IHC-w high-T-IHC water-IHC) 
  high-T-IHC    :  (inst-of high-T-IHC high-temp) 
  imm-htr-IHC   :  (inst-of imm-htr-IHC immersion-heater) 
  in-IHC-iw     :  (in imm-htr-IHC water-IHC) 
  in-IHC-wc     :  (in water-IHC cup-IHC) 
  initst-IHC    :  (init-state T-of-IHC-ih high-T-IHC in-IHC-iw imm-htr-IHC) 
  made-of-IHC   :  (made-of cup-IHC mchina-IHC) 
  mchina-IHC    :  (inst-of mchina-IHC material-china) 
  on-IHC        :  (on saucer-IHC cup-IHC) 
  saucer-IHC    :  (inst-of saucer-IHC saucer) 
  T-of-IHC-ih   :  (temperature-of imm-htr-IHC high-T-IHC) 
  T-of-IHC-w    :  (temperature-of water-IHC high-T-IHC) 
  to-reach-IHC  :  (to-reach initst-IHC goalst-IHC) 
  water-IHC     :  (inst-of water-IHC water) 
 
 
;;;;;;  Base sit. FDO (Food on a Dish in an Oven) 
 
  sit-FDO       :  (inst-of sit-FDO situation) 
 
  cause-FDO-i   :  (cause initst-FDO-2 in-FDO-fo) 
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  cause-FDO-t   :  (cause interst-FDO  T-of-FDO-f) 
  dish-FDO      :  (inst-of dish-FDO baking-dish) 
  endst-FDO     :  (end-state T-of-FDO-f) 
  follows-FDO   :  (follows initst-FDO-1 endst-FDO) 
  food-FDO      :  (inst-of food-FDO food) 
  goalst-FDO    :  (goal-state T-of-FDO-f high-T-FDO food-FDO) 
  high-T-FDO    :  (inst-of high-T-FDO high-temp) 
  initst-FDO-1  :  (init-state T-of-FDO-o high-T-FDO on-FDO in-FDO-do) 
  initst-FDO-2  :  (init-state on-FDO in-FDO-do) 
  interst-FDO   :  (inter-state in-FDO-fo T-of-FDO-o oven-FDO) 
  in-FDO-fo     :  (in food-FDO oven-FDO) 
  in-FDO-do     :  (in dish-FDO oven-FDO) 
  on-FDO        :  (on dish-FDO food-FDO) 
  oven-FDO      :  (inst-of oven-FDO oven) 
  rectang-FDO   :  (inst-of rectang-FDO rectang-shape) 
  shape-of-FDO  :  (shape-of dish-FDO rectang-FDO) 
  T-of-FDO-o    :  (temperature-of oven-FDO high-T-FDO) 
  T-of-FDO-f    :  (temperature-of food-FDO high-T-FDO) 
  to-reach-FDO  :  (to-reach initst-FDO-1 goalst-FDO) 
 
 
;;;;;;  Base sit. MTF (Milk in a Teapot in a Fridge) 
 
  sit-MTF       :  (inst-of sit-MTF situation) 
 
  cause-MTF-i   :  (cause initst-MTF-2 in-MTF-mf) 
  cause-MTF-t   :  (cause interst-MTF  T-of-MTF-m) 
  color-of-MTF  :  (color-of tpot-MTF green-MTF) 
  endst-MTF     :  (end-state T-of-MTF-m) 
  follows-MTF   :  (follows initst-MTF-1 endst-MTF) 
  fridge-MTF    :  (inst-of fridge-MTF fridge) 
  goalst-MTF    :  (goal-state T-of-MTF-m low-T-MTF milk-MTF) 
  green-MTF     :  (inst-of green-MTF green) 
  initst-MTF-1  :  (init-state T-of-MTF-f low-T-MTF in-MTF-mt in-MTF-tf) 
  initst-MTF-2  :  (init-state in-MTF-mt in-MTF-tf) 
  interst-MTF   :  (inter-state in-MTF-mf T-of-MTF-f fridge-MTF) 
  in-MTF-mf     :  (in milk-MTF fridge-MTF) 
  in-MTF-mt     :  (in milk-MTF tpot-MTF) 
  in-MTF-tf     :  (in tpot-MTF fridge-MTF) 
  low-T-MTF     :  (inst-of low-T-MTF low-temp) 
  milk-MTF      :  (inst-of milk-MTF milk) 
  T-of-MTF-f    :  (temperature-of fridge-MTF low-T-MTF) 
  T-of-MTF-m    :  (temperature-of milk-MTF low-T-MTF) 
  to-reach-MTF  :  (to-reach initst-MTF-1 goalst-MTF) 
  tpot-MTF      :  (inst-of tpot-MTF teapot) 
 
 
;;;;;;  Base sit. ICF (Ice Cube in a Fridge) 
 
  sit-ICF       :  (inst-of sit-ICF situation) 
 
  cause-ICF-i   :  (cause initst-ICF-2 in-ICF-if) 
  cause-ICF-t   :  (cause interst-ICF  T-of-ICF-i) 
  endst-ICF     :  (end-state T-of-ICF-i) 
  follows-ICF   :  (follows initst-ICF-1 endst-ICF) 
  fridge-ICF    :  (inst-of fridge-ICF fridge) 
  glass-ICF     :  (inst-of glass-ICF glass) 
  goalst-ICF    :  (goal-state T-of-ICF-i low-T-ICF ice-cube-ICF) 
  ice-cube-ICF  :  (inst-of ice-cube-ICF ice-cube) 
  initst-ICF-1  :  (init-state T-of-ICF-f low-T-ICF on-ICF-ig in-ICF-gf) 
  initst-ICF-2  :  (init-state on-ICF-ig in-ICF-gf) 
  interst-ICF   :  (inter-state in-ICF-if T-of-ICF-f fridge-ICF) 
  in-ICF-if     :  (in ice-cube-ICF fridge-ICF) 
  on-ICF-ig     :  (on ice-cube-ICF glass-ICF) 
  in-ICF-gf     :  (in glass-ICF fridge-ICF) 
  low-T-ICF     :  (inst-of low-T-ICF low-temp) 
  made-of-ICF   :  (made-of glass-ICF mglass-ICF) 
  mglass-ICF    :  (inst-of mglass-ICF material-glass) 
  T-of-ICF-f    :  (temperature-of fridge-ICF low-T-ICF) 
  T-of-ICF-i    :  (temperature-of ice-cube-ICF low-T-ICF) 
  to-reach-ICF  :  (to-reach initst-ICF-1 goalst-ICF) 
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;;;;;;  Base sit. BPF (Butter on a Plate in a Fridge) 
 
  sit-BPF       :  (inst-of sit-BPF situation) 
 
  butter-BPF    :  (inst-of butter-BPF butter) 
  cause-BPF-i   :  (cause initst-BPF-2 in-BPF-bf) 
  cause-BPF-t   :  (cause interst-BPF  T-of-BPF-b) 
  circular-BPF  :  (inst-of circular-BPF circular-shape) 
  endst-BPF     :  (end-state T-of-BPF-b) 
  follows-BPF   :  (follows initst-BPF-1 endst-BPF) 
  fridge-BPF    :  (inst-of fridge-BPF fridge) 
  goalst-BPF    :  (goal-state T-of-BPF-b low-T-BPF butter-BPF) 
  initst-BPF-1  :  (init-state T-of-BPF-f low-T-BPF on-BPF in-BPF-pf) 
  initst-BPF-2  :  (init-state on-BPF in-BPF-pf) 
  interst-BPF   :  (inter-state in-BPF-bf T-of-BPF-f fridge-BPF) 
  in-BPF-bf     :  (in butter-BPF fridge-BPF) 
  in-BPF-pf     :  (in plate-BPF fridge-BPF) 
  low-T-BPF     :  (inst-of low-T-BPF low-temp) 
  made-of-BPF   :  (made-of plate-BPF mchina-BPF) 
  mchina-BPF    :  (inst-of mchina-BPF material-china) 
  on-BPF        :  (on plate-BPF butter-BPF) 
  plate-BPF     :  (inst-of plate-BPF plate) 
  shape-of-BPF  :  (shape-of plate-BPF circular-BPF) 
  T-of-BPF-f    :  (temperature-of fridge-BPF low-T-BPF) 
  T-of-BPF-b    :  (temperature-of butter-BPF low-T-BPF)   ; goal 
  to-reach-BPF  :  (to-reach initst-BPF-1 goalst-BPF) 
 
 
;;;;;;  Base sit STC (Sugar in Tea in a Cup) 
 
  sit-STC        :  (inst-of sit-STC situation) 
 
  cause-STC      :  (cause initst-STC taste-of-STC-t) 
  cup-STC        :  (inst-of cup-STC cup) 
  endst-STC      :  (end-state taste-of-STC-t) 
  follows-STC    :  (follows initst-STC endst-STC) 
  goalst-STC     :  (goal-state taste-of-STC-t sweet-STC tea-STC) 
  in-STC-st      :  (in sugar-STC tea-STC) 
  in-STC-tc      :  (in tea-STC cup-STC) 
  initst-STC     :  (init-state taste-of-STC-s sweet-STC in-STC-st sugar-STC) 
  on-STC         :  (on saucer-STC cup-STC) 
  saucer-STC     :  (inst-of saucer-STC saucer) 
  sugar-STC      :  (inst-of sugar-STC sugar) 
  sweet-STC      :  (inst-of sweet-STC sweet-taste) 
  taste-of-STC-s :  (taste-of sugar-STC sweet-STC) 
  taste-of-STC-t :  (taste-of tea-STC sweet-STC) 
  tea-STC        :  (inst-of tea-STC tea) 
  to-reach-STC   :  (to-reach initst-STC goalst-STC) 
 
 
;;;;;;  Base sit. SFF (Salt in Food in a Fridge) 
 
  sit-SFF        :  (inst-of sit-SFF situation) 
 
  cause-SFF-i    :  (cause initst-SFF-2 in-SFF-ff) 
  cause-SFF-tmp  :  (cause interst-SFF T-of-SFF-fd) 
  cause-SFF-tst  :  (cause initst-SFF-3 taste-of-SFF-f) 
  endst-SFF      :  (end-state T-of-SFF-fd taste-of-SFF-f) 
  follows-SFF    :  (follows initst-SFF-1 endst-SFF) 
  food-SFF       :  (inst-of food-SFF food) 
  fridge-SFF     :  (inst-of fridge-SFF fridge) 
  goalst-SFF     :  (goal-state T-of-SFF-fd low-T-SFF food-SFF) 
  in-SFF-ff      :  (in food-SFF fridge-SFF) 
  in-SFF-pf      :  (in plate-SFF fridge-SFF) 
  in-SFF-sf      :  (in salt-SFF food-SFF) 
  initst-SFF-1   :  (init-state in-SFF-ff T-of-SFF-fr fridge 
                                            in-SFF-sf T-of-SFF-fr) 
  initst-SFF-2   :  (init-state on-SFF in-SFF-pf) 
  initst-SFF-3   :  (init-state in-SFF-sf taste-of-SFF-s salty-SFF) 
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  interst-SFF    :  (inter-state in-SFF-ff T-of-SFF-fr fridge-SFF) 
  low-T-SFF      :  (inst-of low-T-SFF low-temp) 
  on-SFF         :  (on plate-SFF food-SFF) 
  plate-SFF      :  (inst-of plate-SFF plate) 
  salt-SFF       :  (inst-of salt-SFF salt) 
  salty-SFF      :  (inst-of salty-SFF salt-taste) 
  taste-of-SFF-s :  (taste-of salt-SFF salty-SFF) 
  taste-of-SFF-f :  (taste-of food-SFF salty-SFF) 
  T-of-SFF-fd    :  (temperature-of food-SFF low-T-SFF) 
  T-of-SFF-fr    :  (temperature-of fridge-SFF low-T-SFF) 
  to-reach-SFF   :  (to-reach initst-SFF-1 goalst-SFF) 
 
 
;;;;;;  Base sit. ERW (Egg in Red Water) 
 
  sit-ERW        :  (inst-of sit-ERW situation) 
 
  cause-ERW      :  (cause initst-ERW  color-of-ERW-e) 
  color-of-ERW-e :  (color-of egg-ERW red-ERW) 
  color-of-ERW-w :  (color-of water-ERW red-ERW) 
  egg-ERW        :  (inst-of egg-ERW egg) 
  endst-ERW      :  (end-state color-of-ERW-e) 
  follows-ERW    :  (follows initst-ERW endst-ERW) 
  goalst-ERW     :  (goal-state color-of-ERW-e egg-ERW) 
  in-ERW-ew      :  (in egg-ERW water-ERW) 
  in-ERW-wt      :  (in water-ERW tpot-ERW) 
  initst-ERW     :  (init-state color-of-ERW-w red-ERW egg-ERW in-ERW-ew) 
  made-of-ERW    :  (made-of tpot-ERW mmetal-ERW) 
  mmetal-ERW     :  (inst-of mmetal-ERW material-metal) 
  red-ERW        :  (inst-of red-ERW red) 
  to-reach-ERW   :  (to-reach initst-ERW goalst-ERW) 
  tpot-ERW       :  (inst-of tpot-ERW teapot) 
  water-ERW      :  (inst-of water-ERW water) 
 
 
;;;;;;  Base sit. GWB (Glass in a Wooden Box) 
 
  sit-GWB       :  (inst-of sit-GWB situation) 
 
  box-GWB       :  (inst-of box-GWB box) 
  cause-GWB     :  (cause in-GWB protects-GWB) 
  endst-GWB     :  (end-state protects-GWB) 
  follows-GWB   :  (follows initst-GWB endst-GWB) 
  glass-GWB     :  (inst-of glass-GWB glass) 
  goalst-GWB    :  (goal-state protects-GWB) 
  in-GWB        :  (in glass-GWB box-GWB) 
  initst-GWB    :  (init-state glass-GWB box-GWB in-GWB) 
  made-of-GWB-b :  (made-of box-GWB mwood-GWB) 
  made-of-GWB-g :  (made-of glass-GWB mglass-GWB) 
  mglass-GWB    :  (inst-of mglass-GWB material-glass) 
  mwood-GWB     :  (inst-of mwood-GWB material-wood) 
  protects-GWB  :  (protects box-GWB glass-GWB) 
  to-reach-GWB  :  (to-reach initst-GWB goalst-GWB) 
 
;;;;;;  Target problem HM1  (Heating Milk, variant 1) 
 
  sit-HM1       :  (inst-of sit-HM1 situation) 
 
  goalst-HM1    :  (goal-state T-of-HM1 high-T-HM1) 
  in-HM1        :  (in milk-HM1 tpot-HM1) 
  initst-HM1    :  (init-state milk-HM1 tpot-HM1 in-HM1 made-of-HM1) 
  high-T-HM1    :  (inst-of high-T-HM1 high-temp) 
  made-of-HM1   :  (made-of tpot-HM1 mmetal-HM1) 
  mmetal-HM1    :  (inst-of mmetal-HM1 material-metal) 
  milk-HM1      :  (inst-of milk-HM1 milk) 
  T-of-HM1      :  (temperature-of milk-HM1 high-T-HM1) 
  to-reach-HM1  :  (to-reach initst-HM1 goalst-HM1) 
  tpot-HM1      :  (inst-of tpot-HM1 teapot) 
 
 
;;;;;;  Target problem HM2 (Heating Milk, variant 2) 
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  sit-HM2       :  (inst-of sit-HM2 situation) 
 
  endst-HM2     :  (end-state ???) 
  follows-HM2   :  (follows initst-HM2 endst-HM2) 
  high-T-HM2    :  (inst-of high-T-HM2 high-temp) 
  hplate-HM2    :  (inst-of hplate-HM2 hot-plate) 
  in-HM2        :  (in milk-HM2 tpot-HM2) 
  initst-HM2    :  (init-state hplate-HM2 on-HM2 in-HM2 T-of-HM2) 
  milk-HM2      :  (inst-of milk-HM2 milk) 
  on-HM2        :  (on hplate-HM2 tpot-HM2) 
  T-of-HM2      :  (temperature-of hplate-HM2 high-T-HM2) 
  tpot-HM2      :  (inst-of tpot-HM2 teapot) 
 
 
;;;;;;  Target problem CM1  (Cooling Milk, variant 1) 
 
  sit-CM1       :  (inst-of sit-CM1 situation) 
 
  goalst-CM1    :  (goal-state T-of-CM1 low-T-CM1) 
  in-CM1        :  (in milk-CM1 tpot-CM1) 
  initst-CM1    :  (init-state milk-CM1 tpot-CM1 in-CM1 made-of-CM1) 
  low-T-CM1     :  (inst-of low-T-CM1 low-temp) 
  made-of-CM1   :  (made-of tpot-CM1 mmetal-CM1) 
  milk-CM1      :  (inst-of milk-CM1 milk) 
  mmetal-CM1    :  (inst-of mmetal-CM1 material-metal) 
  T-of-CM1      :  (temperature-of milk-CM1 low-T-CM1) 
  to-reach-CM1  :  (to-reach initst-CM1 goalst-CM1) 
  tpot-CM1      :  (inst-of tpot-CM1 teapot) 
 
 
;;;;;;  Target problem CM2  (Cooling Milk, variant 2) 
 
  sit-CM2       :  (inst-of sit-CM2 situation) 
 
  black-CM2     :  (inst-of black-CM2 black) 
  color-of-CM2  :  (color-of tpot-CM2 black-CM2) 
  goalst-CM2    :  (goal-state ???) 
  to-reach-CM2  :  (to-reach initst-CM2 goalst-CM2) 
  fridge-CM2    :  (inst-of fridge-CM2 fridge) 
  in-CM2-mt     :  (in milk-CM2 tpot-CM2) 
  in-CM2-tf     :  (in tpot-CM2 fridge-CM2) 
  initst-CM2    :  (init-state fridge-CM2 in-CM2-tf in-CM2-mt T-of-CM2) 
  low-T-CM2     :  (inst-of low-T-CM2 low-temp) 
  milk-CM2      :  (inst-of milk-CM2 milk) 
  T-of-CM2      :  (temperature-of fridge-CM2 low-T-CM2) 
  tpot-CM2      :  (inst-of tpot-CM2 teapot) 
 
 
;;;;;;  Target problem WB1  (Water in a wooden Bowl) 
 
  sit-WB1       :  (inst-of sit-WB1 situation) 
 
  bowl-WB1      :  (inst-of bowl-WB1 bowl) 
  goalst-WB1    :  (goal-state T-of-WB1 high-T-WB1) 
  in-WB1        :  (in water-WB1 bowl-WB1) 
  initst-WB1    :  (init-state water-WB1 bowl-WB1 in-WB1 made-of-WB1) 
  high-T-WB1    :  (inst-of high-T-WB1 high-temp) 
  made-of-WB1   :  (made-of bowl-WB1 mwood-WB1) 
  mwood-WB1     :  (inst-of mwood-WB1 material-wood) 
  T-of-WB1      :  (temperature-of water-WB1 high-T-WB1) 
  to-reach-WB1  :  (to-reach initst-WB1 goalst-WB1) 
  water-WB1     :  (inst-of water-WB1 water) 
 
 
;;;;;;  Target problem WG1  (Water in a Glass) 
 
  sit-WG1       :  (inst-of sit-WG1 situation) 
 
  color-of-WG1  :  (color-of glass-WG1 white-WG1) 
  glass-WG1     :  (inst-of glass-WG1 glass) 
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  goalst-WG1    :  (goal-state T-of-WG1 high-T-WG1) 
  in-WG1        :  (in water-WG1 glass-WG1) 
  initst-WG1    :  (init-state water-WG1 glass-WG1 in-WG1 made-of-WG1) 
  high-T-WG1    :  (inst-of high-T-WG1 high-temp) 
  made-of-WG1   :  (made-of glass-WG1 mglass-WG1) 
  mglass-WG1    :  (inst-of mglass-WG1 material-glass) 
  T-of-WG1      :  (temperature-of water-WG1 high-T-WG1) 
  to-reach-WG1  :  (to-reach initst-WG1 goalst-WG1) 
  water-WG1     :  (inst-of water-WG1 water) 
  white-WG1     :  (inst-of white-WG1 white) 
 
 
;;;;;;  Target problem SF1  (Salty Food, variant 1) 
 
  sit-SF1       :  (inst-of sit-SF1 situation) 
 
  food-SF1      :  (inst-of food-SF1 food) 
  goalst-SF1    :  (goal-state taste-of-SF1 salty-SF1) 
  initst-SF1    :  (init-state food-SF1 plate-SF1 on-SF1 made-of-SF1) 
  made-of-SF1   :  (made-of plate-SF1 mchina-SF1) 
  mchina-SF1    :  (inst-of mchina-SF1 material-china) 
  on-SF1        :  (on plate-SF1 food-SF1) 
  plate-SF1     :  (inst-of plate-SF1 plate) 
  salty-SF1     :  (inst-of salty-SF1 salt-taste) 
  taste-of-SF1  :  (taste-of food-SF1 salty-SF1) 
  to-reach-SF1  :  (to-reach initst-SF1 goalst-SF1) 
 
 
;;;;;;  Target problem SF2  (Salty Food, variant 2) 
 
  sit-SF2       :  (inst-of sit-SF2 situation) 
 
  endst-SF2     :  (end-state ???) 
  follows-SF2   :  (follows initst-SF2 endst-SF2) 
  food-SF2      :  (inst-of food-SF2 food) 
  in-SF2        :  (in salt-SF2 food-SF2) 
  initst-SF2    :  (init-state salt-SF2 food-SF2 plate-SF2) 
  on-SF2        :  (on plate-SF2 food-SF2) 
  plate-SF2     :  (inst-of plate-SF2 plate) 
  salt-SF2      :  (inst-of salt-SF2 salt) 
 
 
;;;;;;  Target problem EHW  (Egg in Hot Water) 
 
  sit-EHW       :  (inst-of sit-EHW situation) 
 
  color-of-EHW  :  (color-of egg-EHW white-EHW) 
  egg-EHW       :  (inst-of egg-EHW egg) 
  endst-EHW     :  (end-state ???) 
  follows-EHW   :  (follows initst-EHW endst-EHW) 
  in-EHW-ew     :  (in egg-EHW water-EHW) 
  in-EHW-wt     :  (in water-EHW tpot-EHW) 
  initst-EHW    :  (init-state egg-EHW in-EHW-ew in-EHW-wt T-of-EHW) 
  high-T-EHW    :  (inst-of high-T-EHW high-temp) 
  made-of-EHW   :  (made-of tpot-EHW mmetal-EHW) 
  mmetal-EHW    :  (inst-of mmetal-EHW material-metal) 
  T-of-EHW      :  (temperature-of water-EHW high-T-EHW) 
  tpot-EHW      :  (inst-of tpot-EHW teapot) 
  water-EHW     :  (inst-of water-EHW water) 
  white-EHW     :  (inst-of white-EHW white) 
 
 
;;;;;;  Target problem ICC  (Ice Cube in Coke) 
 
  sit-ICC       :  (inst-of sit-ICC situation) 
 
  follows-ICC   :  (follows initst-ICC endst-ICC) 
  coke-ICC      :  (inst-of coke-ICC coke) 
  endst-ICC     :  (end-state ???) 
  glass-ICC     :  (inst-of glass-ICC glass) 
  ice-cube-ICC  :  (inst-of ice-cube-ICC ice-cube) 
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  in-ICC-ic     :  (in ice-cube-ICC coke-ICC) 
  in-ICC-cg     :  (in coke-ICC glass-ICC) 
  initst-ICC    :  (init-state ice-cube-ICC in-ICC-ic in-ICC-cg T-of-ICC) 
  low-T-ICC     :  (inst-of low-T-ICC low-temp) 
  made-of-ICC   :  (made-of glass-ICC mglass-ICC) 
  mglass-ICC    :  (inst-of mglass-ICC material-glass) 
  on-ICC        :  (on table-ICC glass-ICC) 
  table-ICC     :  (inst-of table-ICC table) 
  T-of-ICC      :  (temperature-of ice-cube-ICC low-T-ICC) 
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